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CHAPTER 1: INTRODUCTION 

Traditionally, transportation research has investigated the operations (OP), human factors (HF), and 

safety (SA) aspects of transportation issues in relative isolation. Even though it is possible to study HF 

and OP together, the use of surrogate measures to translate those findings to the SA realm is often 

unavoidable because of scarcity of crash data, compared to the wealth of OP and HF data. Clearly, there 

is a need to better understand how and to what extent are variables studied in OP and HF conducive to 

the observed crash outcomes, typically studied by SA after the fact. Questions about risky behaviors and 

other OP and SA factors associated with crash propensity can be answered using naturalistic data, such 

as the Second Strategic Highway Research Project (SHRP2) databases. However, in the face of the ever-

changing traffic OP conditions and demographics, it is important to investigate how OP, HF, and RS 

interact, and how those interactions are likely to affect the variables of interest for traffic engineers, 

behavioral scientists, and SA researchers. To articulate the interrelations among OP, HF, and SA, one 

needs to bridge the multiple temporal scales involved in those interrelations. On one hand, HF and OP 

phenomena occur in time resolutions of the minutes or seconds, but SA studies crashes observed over 

periods of months or years. 

Project Objective 

This project identified and quantified relationships among traffic OP variables (such as operating speeds) 

and HF characteristics (e.g., driver demographics). The intent was to shade light on these relations over 

SA outcomes (crash or near-crash) making use of the recently available SHRP2 databases. Figure 1 

illustrates the concept of this study’s objective. 

 

Figure 1. Interrelations between Demographic, OP, and SA Outcome Distributions. 
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on seven states, and the Roadway Information Database (RID), which is a rich data set from those seven 

states containing multiple years of roadway features, yearly traffic, crashes, and geolocation of such 

features. Combined, these databases encompass crashes and near-crashes documented in detail, as well 

as multiple peripheral data that can be directly linked to specific locations, driver, and vehicle 

characteristics. Researchers assembled the data sets of interest by combining and querying these 

databases. 

Structure of the Report 

This report consists of eight chapters. Chapter 1 introduces this research and the structure of the report. 

Chapter 2 provides basic background and describes the work plan. Chapter 3 summarizes the literature 

review performed prior to the data reduction. Chapter 4 summarizes the data characteristics. Chapter 5 

provides details about the methodology implemented in the analyses. Chapter 6 describes and 

document the analyses performed for the study on driver speed of choice (SOC) in freeways (Study 1). 

Chapter 7 documents the analyses performed to study driver speed on freeway ramps (Study 2). 

Chapter 8 summarizes the conclusions and outlines future directions from this work. This report includes 

an appendix with a research paper derived from Chapter 7 that was submitted for publication (and 

accepted) at the Transportation Research Record. The Journal of the Transportation Research Board. 
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CHAPTER 2: NDS BACKGROUND AND WORK PLAN 

This chapter summarizes the general background to this research and outlines the work plan prepared 

to accomplish the research goal. The next subsection summarizes the features of naturalistic data (i.e., 

data from real-world drivers who have agreed to get their vehicles instrumented for research purposes) 

since that is precisely the type of data set used in this research. 

Naturalistic Driving Studies 

Naturalistic driving studies pertain to a research approach that attempts to understand typical driver 

behaviors through inconspicuous sensor data collection [1]. Instrumented vehicles record microscopic 

data for later download and analysis. These microscopic data range from survey data and psychological 

profiles to raw sensor data from global positioning system (GPS) loggers, accelerometers, and infrared 

devices. Ideally, drivers would be representative of various locations to capture and represent 

geographical and geometric diversity. However, the cost of such wide representation is significant and 

often means that a compromise should be achieved between the wide representativeness and scope. 

Although NDS may provide a better understanding of how and why crashes happen, the data collected 

can be difficult to prepare for analysis and results hard to interpret. A published paper offering 

prospective on these types of studies recognizes three main methodological groups: a) studies on 

surrogates for events of interest (e.g., crashes) and the hierarchical relationship between those events 

and their surrogates; b) studies that pursue the interpretation of the driving context and its influence on 

drivers; and c) studies that assess the risk of events of interest (e.g., crashes) and the representativeness 

of such risk estimates (i.e., based on features of the sampling design of data) [2]. 

Prior NDS Studies 

There are two landmark NDS efforts that demonstrate the progression of the field in terms of scope, 

approach, and depth of research questions: a) the 100 Car NDS, and b) SHRP2 NDS.  

The 100 Car NDS was the first large-scale instrumented vehicle study conducted for the express purpose 

of collecting naturalistic driving data [3, 4]. The study collected approximately 2,000,000 vehicle miles, 

43,000 hours of data, with 241 primary and secondary drivers spanning a 34-month period starting in 

August 2001. Upon completion of the data collection effort, there were 10 primary research objectives 

for the project: 

1) Characterize crashes, near-crashes, and incidents. 

2) Quantify near-crash events by operational characteristics. 

3) Characterize driver inattention. 

4) Qualify driver behavior and how it changes over time. 

5) Understand the causal factors and dynamic conditions to rear-end conflicts. 

6) Understand the causal factors and dynamic conditions for lane-change conflicts. 

7) Understand the role of inattention for rear-end lead vehicle scenarios. 

8) Characterize the rear end scenarios in relation to Heinrich’s Triangle. 

9) Evaluate performance of hardware, sensors, and data collection system. 

10) Evaluate performance of data reduction plan, triggering methods, and data analysis. 
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In their attempts to analyze the data collected, researchers found difficulty in addressing question 2. 

Noise in the data and sensor issues limited their ability to relate near-crash events to operational 

characteristics. For example, in a lane-switching scenario, the radar that provides the distance to the 

lead vehicle would not collect data about the lead vehicle until the lane change maneuver is complete. 

This situation then results in incomplete information in the data set. Additionally, researchers concluded 

that the kinematic signatures associated with near-crash events are virtually identical to many common 

driving situations that are not indicative of crash risk.  

The second major NDS conducted was the SHRP2 NDS [5]. To increase the volume of data collected, for 

the 100-car study, SHRP2 recruited significantly more drivers (nearly 2,360 participants either having 

completed their participation or on the road as of September 2012). This study was organized across six 

institutions: Indiana University, Pennsylvania State University, University of South Florida, Westat, 

CUBRC, and Battelle. The overarching interest for this research study was to study how driver behavior is 

affected by driver characteristics, vehicle, roadway, and environmental factors, and how changes in 

those behaviors are related to crash risks under various conditions.  

Research Plan 

To address the proposed research questions, researchers obtained NDS data from the SHRP2 NDS 

databases with the intent to investigate the relationships of interest to this research project. Two 

different studies were devised as a result. 

Study 1: SOC, Car-following Behavior, and Crash Risk on Highway and Freeway Operations 

Researchers prepared queries in the Insight website [6] to assess how many events of potential interest 

are available. The Insight website allows its users to examine the data preliminarily, before they can 

request specific data sets for purchase. The queries researchers prepared contained a set of 

approximately 900 events of interest. Among all the events, there were three distinct kinds: baseline 

events (i.e., random snippets of normal driving behavior), near-crash events (i.e., driving behavior 

immediately before, during, and immediately after a near-crash situation), and crashes (i.e., driving 

behavior immediately before, during, and immediately after a situation that resulted in a crash). 

Primarily, the queries were designed to include operational speed, radar gap, and headway with 

resolution of 10 ms. Each event consists of up to 30 seconds of data, but several of these events were 

limited to partial availability for either speed, gap, or both types of data. In addition, the queries were 

prepared to include facility type, SA outcome, level of service (LOS), light condition, driver gender, driver 

age, and driver risk-taking questionnaire answers, among other variables. A total of 105 variables were 

requested for potential analysis. After applying some filters, a final set of 847 events was requested 

from Virginia Tech for analysis. 

The following are the steps that researchers proposed for a comprehensive analysis of these driving 

events: 

1. Extract speed, gap, and headway data from all 847 events requested. 

2. Develop a data set merging the data from these events and the corresponding RID segment 

characteristics. 
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3. Develop models for baseline speed that differentiate between car-following and free-flowing 

situations (considering gap and headway, when appropriate) for highway and freeway cross-

sections. 

4. Use the free-flowing model to obtain insights on driver SOC, potentially considering humans 

factors characteristics (gender, age, risk-taking questionnaire answers, visual acuity, etc.). The 

number of factors that can be determined influential in such baseline model would depend on 

how many baseline events are found that represent free-flowing conditions. 

5. Considering the results from the SOC analysis, perform an additional analysis on how a car-

following situation (i.e., subject vehicle following a vehicle in front) seems to affect speed, gap, 

and headway of the study participants. 

6. Study the relation of near-crash and crash events with operational models developed in the 

prior steps. 

7. Perform an investigation of how the marginal and conditional distributions of OP, HF, and SA 

variables relate to each other. 

Study 2: SOC on Freeway Ramps 

The second project concerns the speed choice on freeway ramps. Researchers identified four 

interchanges (16 ramps) of interest using SHRP2 RID and trip density maps from the Insight website [6]. 

After identifying the freeway ramps of interest, researchers requested the NDS trip and driver 

characteristics data. To inform the request of driver characteristics data, researchers conducted a 

comprehensive literature review on the driver characteristics associated with the speed choice and 

speeding behavior. As the result, researchers obtained over 2,000 trip data taken by over 60 drivers. The 

trip distances were approximately 2 miles, while the time of the trip varied based on the driver. As for 

Study 1, the trips were measured in the timeframe of seconds.  

For the second study, researchers prepared the following data analysis plan: 

1. Extract the GPS and network speed data from the requested trips.  

2. Reduce the trip time series data by identifying those trips that were recorded poorly and had 

inconsistencies.  

3. Apply data transformations to aggregate the trip time series data into a more manageable set. 

As indicated, the trips were available on a secondly basis. However, due to congestion or 

driver’s SOC, the lengths of some of the trips could potentially extend up to 15 minutes. A data 

transformation may be warranted to match the relatively longer time series with the shorter 

ones to be jointly analyzed.  

4. Match and cluster the trip time series data with similar patterns, into a reasonable number of 

clusters to capture different levels of risk driving types. 

5. Conduct the data analysis using machine learning tools to identify the driver characteristics, and 

ramp geometric characteristics associated with the three speed choice states (clusters). 

Potential Areas of Impact from These Studies 

The following lists potential areas of impact from these studies: 

 The influence of HF as it relates to OP and SA may yield findings that are useful to road design 

and highway capacity estimation practice. Previous research has indicated that older drivers 



6 

have higher reaction times and tend to maintain a larger gap between themselves and the 

vehicle ahead of them. With the aging of the general population and increased numbers of older 

drivers, does this increased vehicle gap play a role in road capacity? With more vehicles 

occupied by older drivers, does the increased gap between older driver and lead vehicles allow 

for less overall vehicles on the roadway? An increased share of older drivers could have 

implications in road design on their increased reaction times that this research may help 

quantifying. 

 Improved speed, gap, and headway models are potentially useful to develop updated 

microsimulation models for the various conditions represented in the data set of 847 events. 

More realistic microsimulation models are likely to improve transportation professionals’ ability 

to perform operational assessments of impacts of management strategies or even the effects of 

implemented policy decisions. 

 Knowing the list of the factors that can affect the speed choice on the ramps can help the 

highway engineers to develop better designs to accommodate different types of drivers. 

 Realistic, validated crash and near-crash risk functions offer the opportunity to develop 

estimates of crashes and near-crashes based on operational simulations. 

 The potential quantitative formulation of a mathematical form for the interrelationship of the 

marginal and conditional distributions of OP, HF, and SA variables has the potential to advance 

current knowledge about how these domains affect each other. Currently, there is working 

knowledge, mostly qualitative, of these mutual effects, but there is little literature on qualitative 

estimations.  
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CHAPTER 3: LITERATURE REVIEW 

This chapter summarizes literature relevant to this research’s questions of interest. Researchers 

performed a thorough search of literature sources within the last 10 years on the following topics:  

 Distracted driving based on SHRP2 NDS data published by 2016 or earlier.  

 SHRP2 studies on younger drivers, and older drivers from the same timeframe. 

 Other studies on distracted driving, younger and older drivers; studies focusing on driver 

reaction times. 

 Studies focusing on driver car-following behavior. 

 Studies focusing on distance to collision. 

The following subsections organize the literature found in coherent topics to inform the subsequent 

data reduction, analysis, and interpretation of results. 

Speed Choice and Freeway Safety 

Crash report analysis conducted from 2003 to 2007 by the American Automobile Association Foundation 

for Traffic Safety revealed that aggressive driving was reported in 56 percent of fatal crashes [7], with 

the number one factor being excessive speed. Aggressive driving behavior may ultimately create a risky 

situation not only for drivers themselves but also for other road users. In 2012, there were more than 

33,000 fatalities and 2.2 million injuries in the United States, with driver behavior being a significant 

factor in more than 90 percent of these crashes [8]. 

The impact of a driver’s speed choice has been noted across multiple studies to associate with SA [9]. 

The SA association of speed is evaluated as both the absolute speed and speed dispersion (the measure 

of difference between an individual driver’s speed choice and the prevailing traffic conditions). There 

are many factors that can impact the SA of a driver beyond their speed, such as road design and surface 

condition. These factors include situational, demographic, and personality characteristics and could be 

potentially divided into two main categories: 

 Personal characteristics of driver: age, gender, sensation seeking, risk perception, etc. 

 External factors: other road users, road type, passengers, congestion, speed limit, etc. 

Figure 2. Speed and its SA Implications. 
 

From the operational standpoint, the relationship between a driver’s speed choice and their crash risk is 

well understood and is sensible [10]: as the speed increases, drivers have less time to react or stop in 

response to changing roadway conditions and thus are at a higher risk of collision. However, a definitive 
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answer has not been achieved from SA research that focusing on crashes only. Speed limit is not always 

found to have a marginal association with crashes in the expected direction [9, 11, 12].  

Freeway crashes tend to occur more frequently at on-ramp and off-ramp locations. These crashes 

account for 18 percent of all interstate crashes, 17 percent of injury crashes, and 11 percent of fatal 

crashes at interchange locations [13]. A 2004 study by McCartt et al. found that about 50 percent of 

ramp-related crashes occurred while the vehicles were exiting the freeway, 36 percent occurred while 

the vehicles were entering the freeway, and 16 percent occurred at the midpoints of access roads [14]. 

They also observed that 48 percent of the crashes were run-off-road crashes, and 36 percent of them 

were rear-end collision. These findings suggest that speed adjustments that occur at interchange 

locations, such as freeway-to-ramp transitions, may be associated with an increase in crashes. Kim et al. 

found that 85 percent of all freeway rear-end crashes occurred within 2000 ft of the on-ramp gore [15]. 

This study found that there was a strong association between rear-end crash rates and deceleration 

rate. Overall, speed indicators and the acceleration rates have been found to be important predictors of 

highway SA [16, 17, 18, 19, 20].  

Surrogate Measures of Safety 

Surrogates are objective measures that are sought in research to relate crashes, near-crashes, and pre-

event factors, ranging from the driver’s personal tendency toward unsafe driving behaviors to 

environmental factors such as rainfall or other inclement weather conditions. Various single metric 

surrogate measures have been proposed in the past, including but not limited to: time to collision (TTC), 

deceleration rate, lateral position, and jerk [21, 22, 23, 24, 25].  

Wu et al. concluded that good SA surrogates must have five general characteristics: a) the surrogate 

should have a short period of data collection and be more frequent than accidents, b) the surrogate 

should be correlated with a clinically meaningful outcome, c) the surrogate should have a statistical and 

causal relationship to crashes, d) the surrogate should fully capture the effect of a treatment in a way 

similar to how the treatment would affect crashes, and e) the surrogate should function as a marker 

correlated to a crash with a time scale underpinning [26].  

Post-encroachment Time 

Songchitruksa and Tarko propose a method that leverages a traffic event’s operational characteristics 

with an understanding of extreme value theory to indicate the expected number of crashes on a 

roadway segment [27]. The process involves five steps: 1) decide crash type of interest for analysis, 2) 

determine crash proximity measure (CPM), 3) measure CPM at multiple other sites, 4) generate 

relationship between CPM and historical data of crashes, and 5) apply CPM relationship to measured 

data at site of interest. For this study specifically, researchers decided to apply the method to right-

angle crashes at intersections. Accordingly, the CPM applied was post-encroachment time. This value 

refers to the amount of time that vehicles spend occupying a given space within the intersection. If the 

value is large, then there is safe passage for both vehicles; if the value is zero or slightly negative, then a 

crash has occurred. The extreme value theory approach mathematically transforms the extremes 

observed in a short observation period to attempt to reflect the events over the course of an extended 

timeframe. To observe whether this approach could be relied upon, researchers conducted a Monte 

Carlo simulation using traffic and crash data from 12 sites. This approach is not limited to just right-angle 

crashes and post-encroachment time CPM, and it can be generalized to any type of crash and any CPM 
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with statistical adjustments to risk estimation, if it adheres to the following general guidelines on the 

CPM: 

 The CPM must be defined relative to the type of crash for the analysis. For example, post 
encroachment time may not be a relevant CPM for other crashes.  

 The CPM must be observable and continuous, such that it adequately represents both crash-free 
OP and collisions. 

 A definitive boundary in the CPM must exist between the crash and non-crash conditions. 

After observing how the extreme value theory can be applied to approximate the number of crashes, 

the next point of interest is whether there can be a definitive relationship between these operational 

characteristics and SA and whether the likelihood of a crash or near-crash event can be determined 

from these flow characteristics.  

 

Figure 3. Eight Traffic Flow Regimes [28]. 

Traffic Regime and Crash Risk 

Golob et al. studied traffic flow conditions through inductive loop detectors and analyzed them for the 

number of crashes [28]. To calibrate the analysis approach, this data set included over 1000 crash events 

over six major freeways in Orange County, California, in 1998. 

Researchers segregated the data set by crash type, crash location, and severity. Researchers used traffic 

flow data collected in 30-second intervals of the count, and occupancy, and then grouped the 
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operational data into four blocks of general information: central tendency of speed, variation in speed, 

central tendency of volume, and variation in volume. Researchers then performed a cluster analysis to 

find groups of traffic flow conditions. These eight regimes were as follows: light free flow, mixed free 

flow, heavy variable free flow, flow approaching capacity, heavy flow at moderate speed, variable speed 

in congested flow, variable volume in congested flow, and heavily congested flow (see Figure 3). 

 

Figure 3. Pight Traffic Flow Regimes (continued) [28]. 
 

For these regimes, different types of crashes were found to be more prevalent in different regimes. The 

percentage of prevailing crashes by type is shown in Figure 4. For example, if the flow is characterized by 

a heavily congested regime (eight cluster in Figure 3) or as heavy with variable free flow (third cluster in 

Figure 3), the prevailing percentages of rear-end crash type are 83.3 percent and 78.8 percent, 

respectively. Golob et al. extended their research to develop a tool called Flow Impact on Traffic Safety 

[29].  
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Figure 4. Prevalence of Types of Crashes with Traffic Regimes [28]. 

Brake Operation 

Cheng et al. evaluates the driver brake operation in near-crash events through a forward-facing camera 

equipped to 50 taxis in Beijing [30]. Data were collected over the course of one year, amounting to 

4.5 million kilometers traveled in the study. This data set includes 50 professional drivers with the 

following recorded characteristics: gender (48 male, 2 female), age (43 ± 5), and driving experience (13 ± 

4). The vehicles were instrumented with equipment that would be automatically triggered by the 

following conditions: the Video Drive Recorder would record if the longitudinal acceleration reached .4G 

within 0.5 seconds, or if the instantaneous acceleration reaches 2G at any point. Upon analysis of the 

data, researchers found that the number of near-crash events to be approximately 60 times as large as 

actual crash events. Researchers indicated that there could be an underlying relationship that could be 

potentially mined to characterize the relationship between near-crash and crash events. Drivers were 

then categorized as conflict-prone or conflict-infrequent based upon the number of near-crash events 

they were involved with. In a further analysis of the same data set, researchers modeled the relationship 

between the time headway of an individual driver and their distribution of rear-end conflicts. The time-

headway for an individual driver was shown to vary depending on which type of event they were 

involved. 

Near Crashes 

One surrogate measure that has been considered in the past is near-crashes. Guo et al. conducts three 

separate analysis: sequential factor analysis, frequency relationship of behaviors between crash and 

near-crash events, and a sensitivity analysis [31]. This is done to assess whether a sufficiently similar 
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causal mechanism exists in both near-crash and crash events, and to also evaluate the assumption of a 

constant crash-to-near-crash ratio. Researchers found a positive relationship between the number of 

crashes and near-crashes, which varies by situation. In general, the authors advocate for the combined 

analysis of crashes and near-crashes to improve accuracy of estimates. 

Car-following Speed  

Early studies of driver behaviors on the road began to define the concepts of TTC, safe stopping 

distances, and vehicle headways in terms of driver perceptions and reactions. Gibson and Crooks [32] 

postulated that drivers have a general sense of the minimum distance that would be required to stop 

their vehicle, depending on the vehicle’s speed and the roadway conditions, and will be inclined to slow 

or steer the vehicle, gradually or suddenly, if they perceive an object encroaching within the minimum 

safe distance they have estimated for themselves. Gibson and Crooks also recognized that driver 

inattention could interfere with detection of approaching objects in the driving path and result in a 

vehicle headway that is shorter than the real or perceived minimum stopping distance. 

In the late 1950s and early 1960s, several different mathematical models were developed to attempt to 

describe and predict a complete picture of driver following distances, speeds, and acceleration and 

deceleration behaviors as responses to the roadway environment and surrounding vehicles [33]. These 

models were generally developed using controlled experiments with instrumented vehicles on test 

tracks or open roads and may have been limited in part by their focus on optimum decision-making by 

drivers under controlled test conditions, rather than driver behaviors in more natural driving 

circumstances.  

Driver Reaction Times 

Similar to studies used for early car-following models, many driver reaction time studies have 

necessarily been conducted using volunteer drivers in simulated or test-track conditions. More recently, 

naturalistic driving studies have provided the opportunity to measure drivers’ reactions to real-world 

roadway environments and events without the constraints of any testing scenario. Many simulator and 

test track studies have explored the effects of cell phone use on driver performance, including reaction 

times. Two meta-analyses, one of 33 studies in which drivers talked on hands-free or handheld cell 

phones while driving and one of 28 texting-and-driving studies, found that phone-related distractions 

tended to increase drivers’ reaction times to events [34, 35]. In 2011, a test-track texting and driving 

study [36] estimated a doubling of reaction time for drivers writing or reading text on a cell phone, 

compared to undistracted drivers. 

Age can affect the speed at which drivers process information, which in turn can degrade abilities to 

perceive hazards, shift attention, and manage complex driving tasks. As a result, older drivers tend to 

require more time to scan for visual cues when driving, tend to pay more attention to static cues than to 

dynamic ones, and can be slower to respond to changes in the driving environment, particularly to 

unexpected events [37, 38, 39]. An examination of reaction times of 351 drivers found that reaction 

times “increased progressively between the ages of 20 and 80” [40]. 

Reaction times depend partly on physical reflexes and motor skills, but also depend on how quickly a 

driver can sort through the possible responses to a stimulus, such as braking, steering, or both to avoid 

an object. When the number of possible responses is low, differences in reaction times between 
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younger and older adults are relatively small; as the number of possible responses to a stimulus 

increases, older adults are at an increasing disadvantage [39, 41].  

Car-following Distances and TTC 

TTC is dependent on the distance between any two vehicles (or a vehicle and any other object) and on 

their relative velocities and trajectories. Drivers influence TTC between their own vehicle and a lead 

vehicle by controlling their own speed and following distance. Detecting that a lead vehicle is slowing or 

stopping is crucial to avoiding a rear-end collision. It is not surprise that past research have use TTC as a 

variable to study such situations. 

Several studies have shown that secondary-task distraction degrade a driver’s perception and 

assessment of roadway hazards, even when the distraction is not visual. Studies examining lane change 

behaviors [42] and gap acceptance [43] found that drivers who were talking or listening to verbal 

messages were more likely to miss or misjudge potential hazards. The effects of distraction on steady-

state following distance (as opposed to TTC immediately before or after a lane change or other 

maneuver) are less predictable. Several simulator and test-track studies have observed that drivers’ 

following distances were similar or slightly longer when they were using cell phones, compared to when 

they drove undistracted [34, 42, 44, 45]. Other studies have found that drivers engaged in a secondary 

task are slower to adjust their following distances when conditions change, such as when a lead vehicle 

slows [46]. 

Elderly drivers in an instrumented vehicle study drove more slowly and with less speed variability when 

they were distracted versus when they drove undistracted; in addition, both elderly and middle-aged 

drivers in the study exhibited reduced steering when distracted [47]. A simulator study of drivers’ lane-

keeping behaviors found that drivers were better at maintaining lane position when distracted 

compared to when they were not, but only when the roadway environment remained predictable. 

When unpredictable elements were added to the experience (the study used simulated wind gusts), 

undistracted drivers were more successful at maintaining their lane position [48]. This result suggests 

that drivers distracted by secondary tasks become less attentive to steady-state driving tasks such as 

lane position and speed since these do not require as much moment-to-moment mental effort (if 

conditions do not change).  

There is evidence that drivers begin to change their braking behavior as they get older, resulting in 

longer TTCs. An examination of data from the 100-Car NDS found that drivers aged 30 and older begin to 

brake an average of 1.7 seconds earlier than drivers under 30, in response to a decelerating lead vehicle 

[49].  

Human Factors 

The following section discusses which factors affect the operational characteristics and SA of drivers and 

how researchers are currently quantifying these relationships.  

Personality Traits and Driver Experience 

In terms of personality traits, Heino et al. discusses the concept that there are two broad groups of 

people: sensation avoiders and sensation seekers [50]. This is analogous to the conflict-prone and 

conflict-infrequent distinction in near-crash evaluation; however, the key difference is that sensation 
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avoiders and sensation seekers categories define the underlying behaviors, whereas conflict-prone and 

conflict-infrequent designations describe the frequency of those occurrences. The definition of a study 

participant as sensation avoider or seeker was determined by the completion of a psychological test, 

known as the Sensation Seeking Scale [51]. As expected, the study found that sensation avoiding 

individuals tended to prefer longer following distances. However, the physiological (heart rate 

variability) and cognitive (verbal risk ratings) measures of the two groups of sensation seeking and 

sensation avoiders during prescribed car-following tasks were not shown to vary. This indicates that the 

perceived level of risk and amount of cognitive effort is roughly equivalent for the two groups of drivers, 

despite different following distances; this suggests that the headway is chosen to have an optimum 

balance of personal risk relative to personal driving characteristics. Accordingly, it is not that the drivers 

are intentionally pursuing higher risk behaviors; instead, they do not see the behaviors as necessarily 

risky.  

Heino et al. reveals through a Poisson regression analysis that the personality trait of sensation-seeking 

or sensation-avoidance influences the relationship between driver experience and crash involvement 

[50]. The generally assumed trend is that a more experienced driver is less likely to be engaged in a 

crash. When broken down by their sensation-seeking or avoiding personality trait, among drivers who 

have driven less than 80,000 km, sensation avoiders are less likely to be involved in a crash. However, 

among drivers who have driven more than 80,000 km, sensation seekers are less likely to be involved in 

a crash. A possible explanation is that sensation-seeking individuals have improved their measured 

braking in response to situational changes over time, due to their closer car-following habits. In a 

controlled driving simulator study, Winsum et al. focuses on evaluating the choice of time headway in 

car-following vehicles and determining whether the choice of headway is related to the braking 

behaviors [52]. The researchers found evidence that short followers (analogous to sensation-seeking 

individuals) tended to have a finer tune control of braking in critical situations. This thereby supports the 

theory that sensation-seekers, given enough driving experience, can better control their braking 

response and thus reduce their likelihood of a crash relative to the sensation-avoiding individuals.  

Quimby et al. investigated how personality characteristics and personal behaviors affect speed through 

a combination of on-road observations and survey techniques [53]. To ensure that the speed was the 

chosen speed, free-flow speed was sampled unobtrusively from the side of the road with a video 

recording of the vehicles. The video recording allowed the researchers to find the license plates for the 

vehicles and send out surveys. These surveys included eight psychological self-assessments and allowed 

the researchers to evaluate the impact of certain personality characteristics on driver speed choice. The 

eight psychological assessments applied were: decision making style, mild social deviance, willingness to 

commit driving violations, sensation seeking propensity, intolerance, driving stress, hazard involvement, 

and general driving style. To compare the spot speeds of the drivers in the study to other drivers, the 

concept of relative speed is applied; the speed of the individual driver is evaluated relative to the speed 

of the other drivers across that segment also observed in that time segment. When these variables were 

applied independently in a regression equation to predict speed, the violation scale was shown to have 

the largest impact as an 8 percent effect; the model indicates that the more that drivers report 

themselves as engaging in violations, the more likely that their relative speed will be higher. Mild social 

deviance is also indicated to function as a positive predictor of speed; however, when age and other 

explanatory variables are added into the model, the factor is no longer statistically significant. Many of 

the psychological tests are strongly interrelated and measure many of the same driver behaviors from 
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different perspectives. Of the other psychological tests, the stress test was indicated to have a negative 

impact on speed. This implies that drivers who find driving to be a stressful task tend to drive more 

slowly. When the drivers were grouped into five relative speed categories from highest speed to lowest 

speed, the violation, sensation seeking, and stress psychological self-assessment tests proved to be the 

most robust explanatory variables to determine the placement of a driver in a given speed group. 

Age and Gender 

In addition to their personality traits, a driver’s age and gender play a role in their overall involvement in 

crashes, and their choice of speed and time headway. The aggregate analysis of crashes and the role 

that age and gender play in those occurrences suggests that older drivers have the highest fatal crash 

involvement rate and that younger groups of drivers have the highest rate of involvement in all crashes 

[54]. However, a more recent study found that the risk of crash involvement for older drivers tend to 

decrease at times of the day when congestion is high, months of the year when winter conditions are 

prevalent, and in proximity to freeway ramps when the crash occurred over a highway connected to the 

freeway [55]. These changes in risk seem to suggest that older drivers may be offsetting their increased 

risk of crashing by self-regulating to avoid challenging environments to drive. Additionally, the results by 

Massie et al. point to an elevated risk of fatal crashes for men as compared to women, whereas women 

were shown to have a higher rate of involvement in injury crashes [54]. Montgomery et al. investigated 

how the brake response of the drivers varied for various scenarios; the analysis used brake applications 

from the 100-Car NDS and conducted a mixed model analysis to examine the differences by age and 

gender groupings [49]. The braking response was evaluated by the TTC at the moment of the response. 

Table 1 summarizes the results on age and gender of participants.  

Table 1. Impacts of Age and Gender on TTC at Braking. 

Gender Age < 30 Age > 30 

Male 3.2 ± 0.4 s 4.1 ± 0.4 s 

Female 3.8 ± 0.5 s 5.7 ± 0.6 s 

Notes: nmale = 52, nfemale = 32,  
 p < .001 for the differences in TTC at the time of braking for both age and gender 

 

Additionally, the TTC at the braking response was evaluated in four age categories: novice (18–20), 

young (21–30), middle (31–50), and mature (51+). The TTC variable is shown to increase with age. 

However, the increase is shown to not occur linearly with age. The TTC is shown to increase slightly 

between novice (18–20) and young (21–30). Between the young (21–30) and the middle (31–50) 

categories, there is a much more noticeable increase of almost a full two seconds. This is followed by a 

slight increase between middle (31–50) and mature (51+).  

There are several potential explanations for the well-documented trend of increasing TTC with age. 

Charlton et al. propose the compelling argument that they may be compensating for their perceived 

age-related decline [56]. 

Quimby et al. also investigated the impact of how age and gender relate to speed using a combined data 

set assembled from observational and a survey [53]. Researchers applied five general age groupings to 

analyze the impact of age and gender on relative speed choice: 17–29 years, 30–39 years, 40–49 years, 

50–59 years, and 60+ years. Researchers found that males in the age group 17–29 had the highest mean 
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speed of any age and gender pairing in the observed speed sample at 44.9 mph. Table 2 describes the 

mean speed by age group and gender, including 5064 total drivers. While females show a lower mean 

speed than males at every age category, the same pattern of decreasing speed in increasing age 

categories was found to apply to both genders.  

Table 2. Impacts of Age and Gender on Mean Speeds. 

Age Group Males Females Both # of Cases 

17–29 years 44.9 43.7 44.2 744 

30–39 years 44.3 42.7 43.4 1185 

40–49 years 42.4 41.0 41.6 1194 

50–59 years 42.5 41.1 41.9 871 

60+ years 39.4 39.2 39.4 1070 

All Ages 42.2 41.8 42.0 5064 

 

In order to evaluate how the driver’s propensity to be in a certain speed grouping is influenced by the 

driver’s personal characteristics (age, gender, psychological traits, etc.), researchers conducted two 

analyses: Chi-squared Automatic Interaction Detector (CHAID) and logistic modeling. CHAID is a 

statistical process designed to divide a set of cases into mutually exclusive groups. Each of these groups 

will have a unique feature that differs from all the other groups for a specific parameter. Since only 

categorical data can be applied, the variables of age and psychological assessments are grouped 

together. Additionally, the algorithm outputs the percentage belonging to each of the five speed bands 

from within the groups.  

The algorithm found some relations between the defined age and assessment groups. Some of the age 

categories are statistically similar. For example, the age groups 40–49 and 50–59 were combined. This is 

a similar impact as observed by Montgomery et al. [49] on TTC at the point of braking. This may indicate 

a natural grouping for other driver characteristics. Additionally, the impact of the psychological behavior 

can vary greatly depending on age. The higher scores on the violation self-assessment test were shown 

to correspond to higher speeds. However, when combined with age information, the relationship is less 

prominent. For example, 38 percent of drivers with a high violation score in the psychological 

assessment in the 30–39 age group belong to the fastest speed group, whereas only 3.5 percent of the 

same violation score group in the 60+ age group belong to the fastest speed group. This indicates that 

age has a larger impact on the determination of speed choice over the psychological assessment.  

Young drivers, particularly those in their teens, drive less overall miles than drivers in other age groups, 

but are overrepresented in crashes. In 2015, drivers aged 16–19 had a fatal crash rate that is three times 

higher than that for drivers who are 20 and older. The primary reason for this much higher crash risk is 

likely inexperience [57]. An analysis of 539 crash events from SHRP2 NDS video data [58] found that 

drivers aged 16–19 experienced significantly more crashes overall and significantly more rear-end 

crashes compared to drivers aged 35–54.  

At the other end of the spectrum, older drivers tend to be overrepresented in crash-related injuries and 

fatalities (due to increasing physical fragility), but not necessarily in overall crash rates except for the 

oldest age groups (typically 75 or 80 and older). A 2009 study of crash data over the years 2002–2006 

found that drivers aged 60–69 had a lower likelihood of being involved in a crash compared to drivers in 
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other age groups. Crash involvement increased slightly for drivers aged 70–79, and an additional 

increase was found for drivers aged 80 and older [59].  

Inattention 

Driving is an attention-demanding multitask activity for the driver. It is not surprising then that past 

studies have found that a disruption of this process in the form of inattention can cause variations in 

car-following behavior and speed choice of a driver. In an analysis of the impact of inattention of near-

crash and crash events, researchers applied the data set gathered in the 100-Car NDS [60].  

The terms distraction and inattention are frequently used interchangeably in the research literature. 

Accordingly, researchers broadly defined inattention as any point in time when a driver engages in a 

secondary task, exhibits symptoms of moderate to severe drowsiness, or looks away from the forward 

roadway. Inattention can be more specifically described into four categories: secondary task 

distractions, driving-related inattention to the forward roadway, drowsiness, and non-specific eye-

glance away from the forward roadway.  

Secondary task distraction includes a wide array of behaviors, including hand-held devices, talking to a 

passenger, and eating, among others. Within secondary tasks, it has been acknowledged that certain 

tasks occupy more manual or visual attention than others. In this study, secondary tasks are sorted by 

their difficulty as simple (e.g., adjusting radio or drinking), moderate (e.g., talking on handheld device or 

personal hygiene), or complex (e.g., reading or reaching for a moving object). Additionally, although 

some tasks may be pertinent to the driving task, they also qualify as inattention. For example, glances 

away from the roadway toward the speedometer are considered driving-related inattention to the 

forward roadway. This category also includes glances to the rear-view mirrors or windows. While not a 

tangible item that draws away the driver’s attention, drowsiness is considered inattention, with 

behaviors that include eye closures, repeated yawning, and minimal body or eye movement. When 

analyzing the baseline behaviors of drivers, 73 percent of all six-second segments collected in the study 

contained at least one form of driver inattention. Upon conducting an analysis based on the odds ratio, 

researchers found that each of the inattention behaviors had unique impacts on the likelihood of 

involvement in a crash or near-crash event. Table 3 displays the odds ratios for each of the distractions, 

along with an upper and lower confidence interval for the estimate. 

Table 3. Odds Ratio Point Estimates and 95 Percent Confidence for Likelihood of At-Fault 

Crash (N = 49) or Near-Crash (N = 439) under Various Driving Inattention Conditions. 

Type of Inattention Odds Ratio Lower CL Upper CL 

Complex Secondary Task 3.10 1.72 5.47 

Moderate Secondary Task 2.10 1.62 2.72 

Simple Secondary Task 1.18 0.88 1.57 

Moderate to Severe Drowsiness (in isolation from other 
types of inattention) 

6.23 4.59 8.46 

Moderate to Severe Drowsiness (all occurrences) 4.24 3.27 5.50 

Non-Specific Eye Glance Away from the Forward 
Roadway – Greater than 2 Seconds 

0.85 0.20 3.65 

Non-Specific Eye Glance Away from the Forward 
Roadway – Less than 2 Seconds 

0.43 0.17 1.06 
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Odds ratios reflect the measure of association between a certain outcome and an exposure condition. In 

this analysis, the exposure conditions are the inattention categories while the outcome is the 

participation in an at-fault crash event. Table 3 shows how each inattention has a unique association 

with crash involvement. For example, non-specific eye glances away from the forward roadway were 

found to have no significant change in crash involvement, regardless of glance duration. Additionally, as 

expected, the categories of secondary tasks increased the odds of crash involvement with increasing 

complexity of the task performed. Simple secondary tasks were not found to have a significant 

association with crash involvement. However, engaging in a moderate to complex secondary task 

resulted in an increase in likelihood for involvement in a crash event by 2 to 3 times.  

In order to quantify the impact of driver visual attention upon the identification of proper car-following 

headway, Summala et al. [61] evaluated how drivers perceived the lead car’s braking lights when they 

were looking at the lower part of the windscreen, at the speedometer, or at the middle portion of the 

console. These three locations were determined to evaluate in-vehicle driver distraction—glances at the 

lower part of the windscreen were associated with lane keeping glances, whereas glances at the 

speedometer and console were determined to be distracted. Additionally, the drivers were classified by 

the amount of driving experience they had, including beginners (0–4,299 km), novices (4,300–

112,999 km), and experienced drivers (113,000+ km). This classification allowed researchers to observe 

whether the ability of shifting foveal focus for safe braking is a learned behavior with driving experience. 

Researchers observed in the results an increased reaction time to the lead vehicle’s braking based on 

the in-vehicle distraction. The average delay in brake reaction time was found to be 0.9 seconds for the 

lower windscreen position, 2.1 seconds for the speedometer, and 2.9 seconds for the mid-console 

position. This finding suggested that the farther away the driver’s foveal view, the more delayed the 

braking reaction time would be. Additionally, it was determined that the driver’s experience did not 

influence their ability to respond appropriately to the lead vehicle braking event. Although the use of 

peripheral vision in driving can be practiced, normal driving conditions do not necessarily offer a 

learning opportunity for this skill, which may explain why driver experience did not seem to improve the 

reaction time associated with in-car distracted driving.  

With the improvement of in-vehicle technologies for passenger entertainment, the number of in-vehicle 

distractions is constantly on the rise. For any given distraction, there are multiple components—visual, 

physical, and cognitive. For example, to tune the radio to a new channel, the driver moves their visual 

focus to the radio display or adjusts their view to include it in their peripheral vision, causing a visual 

distraction from the roadway environment. Additionally, the driver physically reaches for the tuner knob 

and thereby is physically distracted from responding to a potential roadway hazard. The choice of 

station and decision-making is expected to contribute to the cognitive distraction. Accordingly, many 

have thought the solution should be to incorporate more hands-free and voice-activated devices in 

vehicles because it should reduce two out of three of these components of distraction. If reality abides 

by this scenario, then the overall influence the driver distraction might be minimized accordingly. To 

evaluate this concept, Harbluk et al. [62] designed a study to quantify the impacts of cognitive 

distraction on visual patterns and vehicle control through a series of tasks varying in cognitive 

complexity. The three cognitive load conditions were complex addition (e.g., 47 + 38), simple addition 

(e.g., 6 + 9), and the control group with no additional task. For each driving task record, data were 

gathered on the visual behavior, vehicle control, and driver self-assessment of workload, SA, and 

distraction. For visual behaviors, the general result was that drivers were narrowing their field of focus. 
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This was represented by the increasing percentage of glances that fell within the central 15 degrees of 

the forward roadway, the reduced number of glances at instruments and mirrors, and the decreasing 

number of saccades (quick eye movements characterizing scanning pattern glances) with increasing 

complexity. Vehicle control was characterized by the braking performance of the drivers. Accordingly, 

the continuous driving data from an 8-km segment was coded to find instances of hard braking, defined 

as longitudinal decelerations exceeding 0.25 g. Across the 16 participant data sets and 291 braking 

events, the mean number of braking events increased from approximately 5 to 7. This may indicate that 

drivers employ compensatory cautionary behaviors when faced with significant inattention. In review of 

the self-assessments, it was found that as the task complexity increased, the workload estimation 

increased, the feeling of SA ratings decreased, and the distraction ratings increased.  

While the insight into the braking patterns of distracted drivers is beneficial, other research has focused 

on how distractions impact vehicle following behavior and driving control. Greenberg et al. conducted a 

study of 48 adults (age 35–66) and 15 teenagers in a simulated driving environment with eight driver 

tasks [63]. The study participants were required to respond to sudden movements in the surrounding 

traffic, while maintaining control of their vehicle. Vehicle control was measured in terms of heading 

error and following distance. Heading error is defined as the difference between the roadway tangent 

and vehicle heading measured in degrees at an instantaneous point in time. This value was shown to be 

approximately 0.5° under no distraction conditions and increased up to 0.7° under the handheld phone 

dialing distraction condition. In terms of mean headway distance, it was found that during one of the 

tasks (handheld voicemail), drivers had an increase in mean headway distance of almost 50 ft over the 

no distraction condition drivers. At the operational level, multiple studies have also shown [64] that 

drivers attempt to reduce their workload and mitigate their exposure to risk when they interact with 

their in-vehicle devices. Some of these compensatory behaviors include: decreasing speed, increasing 

car-following distance, changing the relative amount of attention given to driving and non-driving tasks, 

and accepting a temporary degradation in certain driving tasks.  

Distraction 

Driver distraction has long been recognized as a frequent contributor to vehicle crashes. Three 

consecutive years of United States vehicle crash data attribute 10 percent of all fatal crashes and 17–

18 percent of injury-causing crashes at least in part to distracted drivers [65]. Analysis of driving data 

from the 100-Car NDS in the early 2000s found that drivers who were engaged in secondary visual 

and/or manual tasks had a crash and near-crash risk three times as high as those who were not. 

Distraction in secondary tasks was a contributing factor in 22 percent of the recorded crashes and near-

crashes during the year-long study [60].  

Driver distractions due to secondary tasks are generally classified as visual distractions (taking the eyes 

away from the roadway), manual distractions (taking at least one hand off the steering wheel), and 

cognitive distractions (diverting mental attention from the driving task). Distractions that involve more 

than one of these classifications are generally observed to be higher-risk; for example, writing text 

messages on a cell phone while driving involves cognitive, visual, and manual distraction, and has been 

found to associate with higher-risk of resulting in a crash. An observational study of 2229 crashes 

involving teen drivers over the years from 2007 to 2015 found an increase in the proportion of rear-end 

crashes over that period. The overall proportion of crashes involving distracted drivers did not change 

over the study’s period, and neither did the proportion of crashes in which cell phone use was the 
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primary distraction; however, the ways in which crash-involved drivers were using their cell phones did 

change, with texting and other visual phone-related tasks increasing just over 4 percent per year. The 

study also found increases over the years in driver reaction times (from 2.0 to 2.7 seconds) and in the 

percentage of rear-end crashes in which drivers did not react prior to the crash (from 12.5 percent to 

25 percent) [66]. 

Initial studies of naturalistic data obtained in the SHRP2 NDS study have supported many prior studies’ 

conclusions on distraction and crash risk. A 2015 analysis found that visual-manual tasks including 

texting on a cell phone, locating/reaching for a cell phone, and adjusting an in-vehicle radio all 

significantly increased the odds ratios predicting crashes and near-crashes [67]. Talking or listening on a 

cell phone decreased these odds ratios for the events studied. A different analysis of the NDS data by 

the Insurance Institute for Highway Safety [68] examined the 6-second time periods leading up to 1465 

crashes that occurred during the study. When comparing these pre-crash time periods to other periods 

of normal driving, researchers found that any secondary activity by drivers increased the odds of a crash, 

though some activities like talking on a cell phone did not cause a significant rise in crash risk. However, 

cell phone use, including simply talking on a phone, became a more significant crash risk factor when 

researchers excluded the least-dangerous crashes (such as tires striking a curb) and focused on the more 

severe crashes in the data set. Another research analysis of the NDS data [69] supported this conclusion, 

finding that the risk of non-trivial crashes increased by a factor of 2.2 when the driver was talking on a 

handheld phone. Similar results were found by Higgins et al. in another NDS study that tried to account 

for roadway environment as well [70]. This study found that the median reaction time increased by 

40 percent among drivers engaged on visual-manual tasks with an increased risk of crash or near-crash 

4.7 times as large as for undistracted drivers. Interestingly, drivers aged 16–19 were found to have faster 

reaction times yet higher crash risk (about 8.2 times as large as the risk for their older counterparts). 

Distraction-related crash risk may also be affected by the age of the driver. An NDS data analysis [71] 

found that drivers who were younger than 30 and older than 65 years of age were more adversely 

affected by secondary-task distraction, compared to middle-aged drivers. An earlier driving simulator 

study found that when asked to perform secondary vocal and visual tasks while driving, drivers over 65 

had slower reaction times than drivers between 35 and 45 years old [72]. 

Traffic Conditions and Environmental Variables  

Looking from the inside of an individual vehicle, there are multiple potential factors that could lead an 

individual driver to select a longer car-following distance or to choose a lower driving speed. These 

include the age and gender of the driver, the amount of driving experience, the psychological tendencies 

of the driver, and the level of attentiveness during the driving task. Beyond the factors that can be 

understood within an individual driver’s vehicle, there are two general external factors for 

consideration: prevailing traffic conditions and environmental variables. The prevailing traffic conditions 

are described as the operational characteristics of the traffic stream, including but not limited to: 

density, flow, volume, and average speed. The impact of prevailing traffic conditions is both physical and 

psychological. As an individual driver attempts to maneuver on a freeway, there are physical limitations 

to which paths are possible and available to the driver. However, the impact of prevailing conditions can 

also be psychological. In the presence of more vehicles, drivers may employ more cautionary car-

following distances. In terms of the environmental variables, this category includes both inclement 

weather conditions, such as rain or snow, and the geometric configuration of the roadway. One 
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prominent area in which geometric configuration strongly affects the operational characteristics of the 

drivers is curves, as the speed profile reflects the driver’s management of the curve. 

Many of the studies that seek to understand time headway and operational characteristics attempt to 

quantify these variables under free-flowing conditions to remove any possible confounding effects. In 

order to gain a better understanding of how congested flow conditions affect the car-following 

behaviors, Brackstone et al. conducted an instrumented vehicle study on two different road facility 

types—urban arterial and three-lane motorway [73]. The study collected data about both active and 

passive subjects; active subjects referred to the six participants recruited to drive the test vehicle, 

whereas passive subjects referred to the 123 drivers observed car-following the test vehicle during the 

study. Researchers investigated four primary hypotheses: 

1) Increase in flow and density may lead to driver increasing car-following headway. 

2) Driver car-following behavior varies with road characteristics. 

3) Driver car-following behavior is affected by the type of lead vehicle.  

4) Drivers are inconsistent in their choice of headway. 

Although researchers also found that driver car-following behavior does not vary with road 

characteristics, they attribute this result to the large variation observed between the active subject car-

following behaviors. Additionally, researchers evaluated how the type of lead vehicle influenced the car-

following behavior; generally, heavy vehicles were followed more closely than passenger cars. Many 

explanations have been offered for this seeming non-intuitive result, ranging from reduced workload by 

following a single heavy vehicle to reduced risk by following a heavy vehicle under the assumption of 

professional driving skills. Drivers were found to be inconsistent in their choice of adopted headway.  

Beyond the natural occurrence of congestion during peak periods, there are other conditions that may 

cause unique fluctuations in the car-following behaviors. For example, inclement weather conditions 

have been shown to make a significant impact on the free-flow traffic stream parameters. Perrin et al. 

examined the ability to tune signal timings to account for the changes caused by inclement weather 

conditions [74]. They found that the saturation flow decreased significantly in inclement weather. One 

potential explanation is a combination of factors, such as a reduction in free-flow speed, a decrease in 

acceleration rates, and larger headways. These changes, in turn, can be explained by the drivers 

adjusting their driving due to reduced visibility. In heavy rain or snow storms, the road environment can 

often be hard to see. To account for this lack of visibility, many drivers may reduce their speed or 

increase their car-following distance to compensate. 

Outside of the impact on car-following behavior and traffic SA, the surrounding environment plays a 

significant role in the choice of traffic speed. Hagland et al. investigated the impact of other road users 

on the speed choice of drivers through a comparison of observed, reported, and normal speeds [75]. In 

this study, 1029 drivers were stopped, interviewed, and given a questionnaire about their normal speed 

and speeding attitudes. The speeding attitude questions evaluated the perception of the interviewed 

participant about the proportion of drivers who significantly exceed the speed limit, other people’s 

speed habits, and the overall issue of speeding. Approximately 50 percent of the variability in normal 

speed could be accounted for by the interviewed participant’s perception of what percentage of other 

vehicles speed (24 percent), and the participant’s perception of having to keep up with other drivers 

(26 percent). 
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Discussion 

The relationships among the driver characteristics, operational performance, and SA are clearly complex 

and have many significant interrelationships. The influencing factors for a driver’s speed choice and car-

following behavior are quite varied, including everything from the psychological measures of the driver 

from self-reported surveys to their fatigue. Accordingly, it is of interest to the transportation research 

community to attempt and develop models that quantify this relationship. In many of these studies, the 

importance of a singular factor to the analysis is highlighted and emphasized; however, in the 

application of the lessons from the data set, many real-world variables are available and will be taken 

into consideration.  
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CHAPTER 4: DATA CHARACTERISTICS 

The need for SHRP2 was identified in Transportation Research Board Special Report 260 [76], published 

in 2001, and was based on a study sponsored by Congress through the Transportation Equity Act for the 

21st Century (TEA-21). SHRP2 was designed to complement existing highway research programs and 

have four focused areas of applied research: 

 Safety—improve road SA by understanding driver behavior. 

 Renewal—address the aging infrastructure through rapid design and construction methods. 

 Reliability—reduce congestion through incident reduction, management, response, and 

mitigation. 

 Capacity—planning and designing new transportation capacity by integrating mobility, 

economic, environmental, and community needs. 

 

 

Figure 5. SHRP2 Data (FHWA). 
 

The SHRP2 program consists of an NDS and a companion RID (Figure 5). The NDS data were collected 

from more than 3,500 volunteer passenger-vehicle drivers aged 16 to 98 during a three-year period, 

with most drivers participating for one to two years (2010–2012). The study was conducted at sites in six 

states: Indiana, New York, North Carolina, Washington, Pennsylvania, and Florida. The two 

predominantly rural sites were in Indiana and Pennsylvania and covered about 10 counties each. The 

other four urban or mixed sites covered one to three counties each. The total study area encompassed 

more than 21,000 square miles. Specifically, NDS collection sites were Bloomington, IN, Buffalo, NY, 

Durham, NC, Seattle, WA, State College, PA, and Tampa, FL. Collected data included vehicle speed, 

acceleration, and braking; vehicle controls, when available; lane position; forward radar; and video 

views forward, to the rear, and on the driver’s face and hands. The NDS data file contains approximately 

35 million vehicle miles, 5.4 million trips, 2,705 near-crashes, 1,541 crashes, and more than 1 million 

hours of video. Altogether, these amount to two petabytes of data. The NDS data have been divided into 

four main categories: vehicle data, driver demographics and survey data, trip data, and event data. In 

this study, researchers used driver information and trip related data. The data used in the study will be 

described in more detail below.  

RID contains detailed roadway data collected on 12,538 centerline miles of highways in and around the 

study sites—approximately 200,000 highway miles of data from the highway inventories of the six study 
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states. NDS trip data can be linked to roadway data from the RID using a LinkID variable, which is a 

unique road segment identifier. The RID also provides environmental data such as time of day and 

weather. RID mobile data (coded S04B) were collected from the roads frequently driven by NDS 

participants (Table 4). Guidance was developed both for the allocation of total road data collection 

mileage apportioned to each of the NDS sites and for allocation within each study area. Allocation within 

each study area was determined using a sample of GPS traces from the NDS participants’ vehicles.  

Table 4. Mobile Van Data (S04B) Site Coverage. 

NDS site Miles collected 

Florida   4,366 miles 

Indiana   4,635 miles 

New York   3,570 miles 

North Carolina   4,558 miles 

Pennsylvania   3,670 miles 

Washington   4,277 miles 

 

In addition to the data provided from the mobile data collection project, roadway data from existing 

public resources (state department of transportation, Highway Performance Monitoring System, Federal 

Railway Administration) and a list of supplemental data items have been acquired and included in the 

RID. In this project, NDS and RID data have been jointly explored to carry out the data analysis.  

Table 5. Types of Factors and Examples in SHRP2 NDS. 

Type of Factor Factors Potentially Impacts: 

Driver 
Age, Gender, Inattention, Distraction, 
Fatigue, Impairment, Personal Driving 
Characteristics 

- Risk level for participation in 
crash/near-crash events 

- Time of reaction 
- Car-following behavior 

Roadway 
Edge-Marking, Rumble Strips, Lane Width, 
Shoulder Type, Shoulder Width, Curvature, 
Grade, Median, Signing 

- Operational speed 
- Amount of exposure  

Intersection Control Type, Number of Approaches - Number of conflicting movements 

Vehicle 
Type (car, SUV, van), Crash Prevention 
Technologies, Braking, Handling, and 
Visibility Characteristics 

- Decelerations 
- Involvement in crash instead of 

near-crash (prevention technology) 
 

Table 5 lists these factors and how they may potentially impact the data under four broad types: driver, 

roadway, intersection, and vehicle. The bolded potential impact areas demonstrate the connection to 

the current study. 

Study 1: NDS Data Characteristics 

The data set received from Virginia Tech Transportation Institute consisted of 847 events from volunteer 

drivers from Washington and Florida containing 105 variables for a wide range of analyses. Of those 754 
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are baseline events (i.e., normal driver, unrelated to any crash or near crash); 82 near-crash events; 10 

crash events; and 1 event classified as crash-related. Up to 300 speed, gap, and headway readings at 

10 ms intervals were available for each event.  

As described later, researchers matched the NDS and RID data for various analyses. Depending on the 

specific analysis, the data sets of interest would be of different sizes because not all variables were key 

or of interest for all analyses, as well as some variables were available for the complete database. With 

that in mind, Table 6 shows typical descriptive statistics for a subset of 9,265 data that have all the 

variables shown available. 

Table 6. Data Set Descriptive Statistics (n=9,265). 
Variable Mean Std. Deviation Min Max 

Follow Speed (m/s) 25.51 5.78 2.69 42.36 

Lead Speed (m/s) 25.81 5.76 -2.32 67.94 

TTC (s) 37.69 4683.72 -79406.22 339238.10 

Number of Lanes 3.40 1.26 1 7 

Through travel Lanes 3.30 1.13 1 6 

Years of Driving (years) 18.42 17.99 0 69 

Age Class (years) 35.35 17.91 17.5 82 

PSL (mph) 57.80 7.95 25 70 

SOC (m/s) 26.67 2.54 18.14 31.63 

PSL = posted speed limit 

More details on this and the complete data sets are given in the exploratory and formal analyses 

described in the next chapter.  

Study 2: NDS and RID Data Characteristics 

For the ramp study, the authors used NDS trip information (or traversals) collected from ramps at four 

interchanges on two freeway sections in Altoona, PA. For the analysis of speeding behavior, authors 

considered the state where the enforcement of the speed traffic law was not very strict to diminish the 

impact of this factor on drivers’ speeding behavior [77]. Data were obtained from four interchanges on 

two freeways (Figure 33):  

 Urban freeway: William Penn, Blair County. 

 Rural freeway: Bud Shuster Freeway, Blair County. 

The length of each ramp located on these freeway interchanges is approximately 2 miles long, which 

includes locations on the intersecting freeway and street, and the ramp connecting the two. To fulfill the 

objectives of this study, the authors identified trips where each driver had traversed the same ramp in 

both directions of travel. These trips are identified as: 

 Merging: Street to Freeway (SF). 

 Diverging: Freeway to Street (FS). 
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Figure 6. Ramp Trajectories. 
 

For the analysis of speeding behavior, researchers used speeds recorded by the global position system 

(GPS) transponder located in each study vehicle. The NDS trip time series provides both GPS speed and 

the speed recorded by the vehicle’s own network. However, since the speeds recorded by the GPS also 

have the matching latitude and longitude information for every second, the authors elected to use this 

data source as the primary indicator of speeding behavior.  

To obtain a consistent study sample, researchers only selected trip data that spanned the entire 

duration of the target freeway ramps with travel times of 60–70 seconds or greater. This produced 859 

trips taken by 32 participants. In many cases, drivers traveled the study route multiple times over the 

study period. The number of trips per driver for most of the drivers ranged from 2 to 70 trips, with the 

average of 30 trips per driver. Two of the study participants regularly used one of these routes; they had 

accumulated 341 trips (117 and 224 trips), which accounted for almost 40 percent of all trips. Such an 

overrepresentation in the trip numbers can present a bias in the results where the speeding will be 

analyzed as the function of driver characteristics among other explanatory factors. Therefore, due to the 

potential for undue and biased influence in the results from these two drivers if all their trips were used, 

researchers decided to reduce the number of trips by random sampling. For this purpose, researchers 

Bud Shuster HW and 17th St 
(Urban)

•Diamond Interchange

Bud Shuster HW and PA-865 
(Urban)

•Trumpet Interchange

William Penn HW and Tunnehill
(Rural)

•Partial Cloverleaf Interchange

William Penn HW and West 2nd

St (Rural)

•Trumpet Interchange
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assigned 0 and 1 to each trip randomly and selected the trips that were assigned value 1. As the result, 

53 and 77 trips were left. The final study data set used in this study included 256 SF and 392 FS trips.  

Next, researchers assembled a trip summary for each trip. The associated data included the year, 

month, weekday, time bin, and each trip’s maximum speed, mean speed, and speed variance. Since 

there is no exact hour for the trips, instead each trip was assigned a three hours long time bins.  

NDS Driver Characteristics Variables  

To explore how the individual characteristics of a driver may influence their speeding behavior, 

researchers used the following driver information obtained through interviews and psychological testing 

of the SHRP2-NDS participants:  

 Driver demographics: 

o Age Group is the age of the subject driver, categorized in five-year increments (16–19 

years, 20–24 years, 25–29 years, etc.). 

o Gender. 

 Barkley’s Attention Deficit Hyperactivity Disorder (ADHD) screening: Individuals with attention 

deficit disorder and ADHD are prone to frequent inattention and distraction while performing 

tasks. In turn, inattention is a known factor associated with speeding behavior. This observation 

leads to the potential hypothesis that those who score high on Barkley’s ADHD screening test 

may have higher speeding incidences than those who score low on the test. The six items 

included in the Barkley’s ADHD screening are: 1) easily distracted; 2) difficulty organizing; 3) 

loses objects; 4) quick screen–difficulty waiting turn; 5) feels restless; and 6) difficulty enjoying 

leisure activities. Each of these six items is scored by the participant by using one of the 

following three answers: Never or Rarely (1), Sometimes (2), and Often (3). The Barkley’s ADHD 

score was then calculated using the answers provided to these items [78]. 

 Risk perception score (RPS): Risk perception is well-documented in the literature to have a 

strong impact on speeding behavior [79]. Those with low risk perception tend to have a high 

perception of their individual driver control. As part of this characteristic, these drivers tend to 

dismiss risks, exude a high self-confidence (especially about their driving ability), and 

demonstrate unrealistic optimism [80]. It is hypothesized that those with low risk perception 

(which equates to a low RPS score) will have higher number of speeding incidents than those 

who have a high RPS score. Table 7 lists the questions used for the RPS. Respondents answered 

to the questionnaire by assigning No Greater Risk (1), Moderately Greater Risk (4), and Greater 

risk (7) to each question.  
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Table 7. Elements of Risk Perception Questionnaire. 

 Running red light 

 Risks for fun 

 Sudden lane changes 

 Running stop sign 

 Speeding for thrill 

 Tailgating 

 Illegal turn 

 In a hurry 

 Risk of passing on right 

 Yellow light acceleration 

 Driving after taking drug or alcohol 

 Road rage 

 Driving to reduce tension 

 Passenger interaction 

 Racing 

 Speeding <20> mph over limit. 

 Not wearing safety belt 

 RPS 

1- No Greater risk; 4- Moderately Greater Risk; 7- Greater Risk. 
 

 Driving Behavior: An illegal, high-risk, or otherwise detrimental driving behavior that the subject 
driver was observed to be engaging in at the time of the event, such as driving while distracted. 
(This can also be coded as none meaning that no improper/detrimental driving behavior was 
observed at the time of the event.) 

 Secondary Task: Any non-driving task that the subject driver was engaged in at the time of a 
given event (reaching for object, interactions with passengers, adjusting radio or other in-vehicle 
instruments, interacting with cell phones or other devices). For this analysis, the only secondary 
tasks that were included were cell-phone related.  

 Sleeping Habits: Previous research has found personality differences between long and short 
sleepers. Specifically, short sleepers were found to be efficient persons that handle stress by 
keeping busy and by denial. Long sleepers, on the other hand, had higher instances of 
depression and anxiety and scored higher on most pathology tests [81]. This portion of the 
evaluation is an exploratory analysis on both sleep schedule (i.e., whether the participant keeps 
a regular sleep schedule, Yes or No) and sleeper type (i.e., light, normal, or heavy) to determine 
if these factors encompass various traits related to speeding propensity. 

 Depth Perception: Depth perception is the ability to visually perceive the world in three-
dimensional space and is necessary to accurately determine the distance to an object. Depth 
perception is a personal characteristic that directly affects an individual’s visual perception, and 
therefore may be connected to speeding behavior. Participants were shown a picture of four 
rings (top, bottom, left, and right) and were asked if the bottom ring seems to be floating 
toward them. If the participant answers yes, they moved to a second picture and were asked 
which ring seems to be floating toward them. Drivers who cannot see the ring floating toward 
them received no score. For all others, they were scored in seconds of arc, where the smaller 
the seconds of arc, the better depth perception of the participant.  
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CHAPTER 5: METHODOLOGY 

This chapter describes the methodologies applied in this project. It comprises two main subsections, one 

for each of the two studies in this research. 

Study 1 Speed Choice and Car-following Behavior 

This section summarizes the methodology used for the evaluations under Study 1. 

Conceptual Model 

As a first step of the analysis, researchers devised and refined a conceptual model to encapsulate the 

elements of interest to this project. Figure 7 depicts the summary diagram of relationships of interest. 

  

 

Figure 7. Relationships of Interest. 
 

Figure 7 shows three broad categories of variables (color-coded). The Driver Characteristics and 

Operational State categories (in green) represent the most fundamental information about the driver 

and are the building blocks to their behavior. These variables are key to understand the emergence of 

SA performance. The directional arrow from Driver Characteristics to Operational State indicates that 

the former category of variables influences and helps determine the operational state, as measured by 

the two variables under that category: driver car-following and driver response to stimuli. 
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The SA Risk category (in red) represents variables that directly quantify SA performance (crashes, near 

crashes, and sampling characteristics that determine measures of absolute crash risk). As indicated by 

the directional arrows, variables in the SA Risk category are influenced by variables in the other 

categories. 

Finally, the Roadway and Environment categories (in orange) indicate infrastructure and environmental 

elements that have a direct effect on both SA performance and OP. 

Having Figure 7 as a framework, researchers refined its conceptual model of the process of driver car-

following on freeways and highways. The refined conceptual model. 

 

Figure 8. Baseline Freeway Driving Conceptual Model. 
 

The conceptual model in Figure 8 represents the task of driving as two processes performed by the 

driver within a feedback loop: 1) monitoring current driving and environmental conditions, and 2) adjust 

vehicle state variables. Driver ability and characteristics affect both the first and second processes. In 

the early stages of the analysis phase, researchers devoted significant effort to quantify some of the 

relations in this figure using a baseline model calibrated only to non-critical driving events.  

Closely related with Figure 8, Figure 9 shows this conceptual model in the face of a SA critical event 

(defined as an event that demands a response from the driver to avoid a collision). 

Baseline Freeway Driving Process

Adjust vehicle state 
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 Headway
 TTC

Monitor Current 
Environment 
Conditions

Driver Ability/Characteristics
Driver Distractions

Driver Ability/Characteristics
Driver Attitude
Vehicle Features
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determine the “State” of the driving process.
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geometry and conditions.

There is value in investigating Reaction Time (RT) 

and its nuanced relation with TTC. However, real 

world ‘delayed reaction’ is often larger than the 

RT. We would need data on Pedal Brake Signal to 
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TTC is widely used in Human 

Factors literature in studies of 

operational performance
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Figure 9. Conceptual Model for Safety Critical Events (Rear-End Crash). 
 

In the case of a SA critical event, the time it takes to recognize such an event and react to it could make 

all the difference in determining the SA outcome, as shown in Figure 9. An additional step on the 

analysis phase consisted of using the baseline model to examine the crash and near crash situations in 

the data set. 

Car-Following Models 

Brackstone et al. summarized the microscopic car-following behavior models into five broad categories: 

Gazis-Herman-Rothery model, collision avoidance model, linear model, psychological or action-point 

model, and fuzzy-logic-based model [33]. Equations in Table 8 represent the Gazis-Herman-Rothery 

model, collision avoidance model, and linear model of car-following behavior, respectively, with the 

other two categories (psychological and fuzzy-logic based models) discussed afterward. 

 

Table 8. Car-Following Equations [33]. 

𝑎𝑛 (𝑡) = 𝑐𝑣𝑛
𝑚(𝑡) ∗

∆𝑣 (𝑡 − 𝑇)

∆𝑥𝑙  (𝑡 − 𝑇)
 

∆𝑥 (𝑡 − 𝑇) = 𝑎𝑣𝑛−1
2 (𝑡 − 𝑇) + 𝛽1𝑣𝑛

2 (𝑡) +  𝛽𝑣𝑛 (𝑡) + 𝑏0 
𝑎𝑛(𝑡) =  𝐶1∆𝑣 (𝑡 − 𝑇) + 𝐶2(∆𝑥 (𝑡 − 𝑇) − 𝐷𝑛(𝑡) 

 
𝐷𝑛(𝑡) = 𝛼 + 𝛽𝑣 (𝑡 − 𝑇) + 𝛾𝑎𝑛( −𝑇) 

 
Where: 

Event-triggered Response
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 𝛼, 𝛽, 𝛾, 𝐶1, 𝐶2, 𝑐,𝑚, 𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 
 𝑎𝑛 , 𝑣𝑛, 𝐷𝑛 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑎𝑛𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 
 ∆𝑥, ∆𝑣 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑝𝑒𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 𝑎𝑛𝑑 𝑛 − 1 
 𝑡, 𝑛 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑡𝑖𝑚𝑒, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 
 𝑇 = 𝑑𝑟𝑖𝑣𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

 

The psychological (action-point) model is built around conceptual thresholds of perception, where 

drivers perceive the differences in relative speed and base their driving and car-following behavior from 

that point. There are five general phases in car-following with different threshold guidelines: free 

driving, following I, following II, closing in, and danger [33]. Free driving is uninfluenced by the leader 

vehicle, and following I and II conditions present no need for much driver adjustment. However, for 

closing in and danger conditions, deceleration becomes necessary. While this method may better 

represent the human process of making following decisions, it is difficult to estimate and calibrate the 

individual thresholds associated with this model. The fuzzy-logic-based model applies fractional degrees 

of membership to values; for example, if a separation between leading and following vehicles is only 

0.5 seconds, fuzzy classification would still allow for the use of categorical evaluation by granting partial 

membership of 0.5 seconds to class 0 and 1. Similar to the action-point psychological model, the most 

difficult part is in the quantification of membership functions. These models are generally limited in 

scope, however. For example, very little concerted effort has been performed to develop a complete 

driver model since the 1960s. Instead, most models focus on understanding a singular aspect of driving.  

Prior to applying a car-following algorithm, it is critical to understand how these types of algorthims 

relate to true conditions. To understand the differences between available car-following models and 

their errors to the true data from the instrumented vehicles, Panwai et al. collected field data and 

compared it to prominent models, such as AIMSUN 2, VISSIM, and PARAMICS [82]. The last two 

software are predominately driven by a psychophysical model that employs one of four general regimes, 

depending on the perception of changing distance and speed between the current vehicle and the lead 

vehicle.  
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Figure 10. Comparison of Car-Following Models [82]. 
 

The AIMSUN2 and VISSIM models seem to follow very closely the field measurement in Figure 10. The 

logic behind the AIMSUN2 model is based on the Gipps model that determines the desired speed by 

adjusting the current speed by the driver’s desired speed and the relative speed and position of the lead 

vehicle. These elements will be considered in the analysis section. 

Cointegration and Dynamic Relationships 

Two time series are assumed to be co-integrated if the residual term, when regressing one of the time 

series variables over another is determined to be stationary. For example, as described in Figure 11, the 

series 𝑦𝑡 and 𝑧𝑡 are random walks with drift. The residual term that is depicted on the right panel is a 

stationary process. Cointegration of two variables is determined by conducting unit root test such as 

Augmented Dickey-Fuller (ADF) test [83].  

The term dynamic relationship refers to two time series data where the leading (independent) event has 

a lagged effect on the response variables. For example, the car-following driver can react to the leading 

vehicle’s speed changes after few seconds. In that case the leading vehicle will have a lagged effect on 

the car-following vehicle. This relationship can be tested using the Granger causality test. 

Mixed Effects Models 

Within the frame of generalized linear models methods, a distinction can be made between models with 

fixed effects, random effects, and mixed effects. Commonly, the coefficients obtained from generalized 

linear models can be thought of as fixed effects. The variables corresponding to fixed effects are implied 

to have time-invariant effects (e.g., roadway design elements). The model coefficients are estimated and 

interpreted as metrics of underlying parameters from a latent data-generating process.  
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a) Cointegrated series b) Residual term 

 
Figure 11. Cointegrated Series and Residual Term. 

 

In contrast, random effects models estimate the effects of factors that are deemed the observed 

realizations of a random variable. As such, it is typically not of interest to quantify how the response 

variable shift with the observed realizations in the data set, but rather to account for the impact of such 

variation in the model. The simplest example of random effects in linear models is the use of blocking in 

ANOVA designs. Typically, the effect of each block is not the focus of the analysis. However, it is of 

interest to account for the variability from the blocking to quantify the response variability from the 

independent variable of interest. Mixed effects models include both fixed and random effects [84]. 

Mixed effects models approach the analysis of repeated measures cross-sectional data by including a 

random effect per every unit of data aggregation (i.e., the blocking units in the data, such as individual 

study locations with more than one datum in the analysis). Orthogonal to the random effects, the model 

estimates fixed effects for the treatment and any additional fixed effects covariates. As described in the 

previous section, the use of propensity score matching can produce a more robust data set for analysis 

with mixed effects and other analytical alternatives for cross-sectional data. 

Study 2 Ramp Speed Choice 

Time Series Reduction 

Time series reduction tools are used to reduce the dimension of time series data. For example, due to 

the speed differentials, the length of the series (i.e., number of seconds) included in the analysis of ramp 

speed choice ranged between 70 to 850 seconds. Such a significant inequality among the series lengths 

could cause a concern. This problem can be dealt with by reducing the time series dimension (length-

wise) using the algorithms such as Discrete Wavelet and Discrete Fourier transformation.  

In this study, researchers used the Discrete Wavelet Transformation (DWT) to reduce the dimension of 

relatively longer series. Namely, the Haar wavelet is used to conduct the dimension reduction. Haar 

wavelet allows the time series of length 𝑇 to be represented in terms of its orthonormal basis by 

calculating a set of averages and coefficients (usually √2 to ensure energy conservation) [85, 86]. After 

the first iteration, the time series length reduces to 𝑇 2⁄ . The resulting time series is referred as the first 

level of wavelet transformation. The DWT method can be applied recursively until a single coefficient 

and average is obtained.  
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Neural Networks 

To describe the relationships between the predictors (inputs) and the speeding state (output), the multi-

layer perception Neural Network (NN) architecture can be trained by a backpropagation algorithm. NN 

methods are known for their ability to deal with a relatively large number of predictors. The NN 

framework or architecture has three elements: input, hidden layer, and output (Figure 12). Input and 

output refer to the predictors and response variable, respectively. Hidden layers are the collection of 

neurons organized and connected to each other using the arrows that are referred to as the weights. 

Weights can also be understood as the parameter estimates although they should not be interpreted as 

such.  

 
   

Inputs Hidden Layers Outputs 

Figure 12. Neural Networks Framework. 
 

In the NN architecture, the relative contribution of the inputs to the output depends on the magnitude 

and the direction of the connection weights [87]. Connection weights are computed using the weights of 

individual inputs in each hidden layer. Greater connection weight indicates the higher intensity of the 

association. Negative connection weights represent an inhibitory (reducing) effect while the positive 

connection weight represent an excitatory (increasing) effect of the neurons on the output. Figure 12 

shows the NN architecture.  
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CHAPTER 6: STUDY 1 FREEWAY SPEED ANALYSIS 

To gain insights from the data and to understand the problem further described later in this chapter, 

researchers initially examined a subset of the data with a series of graphical comparisons described in 

the following section. 

Initial Exploratory Analysis 

This section shows a preliminary exploration of this data set. Researchers selected a subset of events 

under very specific conditions: a) occurred at interstates or highways with no traffic signals; b) no traffic 

control recorded; c) with divided median, either a barrier or a buffer strip; d) two through lanes in the 

direction of travel without additional auxiliary lanes; e) no adverse weather; and f) traffic flow classified 

as Level-Of-Service A1: free flow, no lead traffic. 

The selected subset consisted of 20 baseline events, each from a different driver. An additional 4 near-

crash events were selected that correspond to a subset of 4 among the 20 drivers with baseline events. 

Finally, a near-crash event without a corresponding baseline event was also included in the preliminary 

subset. 

The number of subsequent speed readings available for each of the selected events ranged from 176 up 

to 300. A total of 5,430 10-ms intervals were extracted for this subset of baseline events. 

 

Figure 13. Baseline Events Speed Profiles (n=19). 
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Figure 13 shows a plot with 19 of the baseline speed profiles. One profile was removed because it 

showed a monotonic increasing trend (i.e., continuous acceleration). Since these events were selected 

such that no other vehicles were around, each represent the desired free-flowing speed for different 

drivers. Interestingly, the overall speed distribution shows a negatively skewed distribution (i.e., heavy 

lower tail). When looking at the data by age groups, the wider group (ages 24–64) seems to be roughly 

centered (i.e., not skewed). Little can be said about older drivers (ages 70–74 and 80–84), since only 

three profiles were present for these groups. Two of those three profiles lie above the grand average for 

the group of profiles, while one lies below the average. What is most interesting in this plot is the fact 

that younger drivers (ages 16–19 and 20–24) tend to have higher speed profiles that other age groups. 

 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 14. Four Drivers with Both Baseline and Near-Crash Events under Free-Flowing 

Conditions (n=4). 
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The plots in Figure 14 show the four drivers with near-crash events. In total, 8 events (5 near crashes 

and 3 baseline) are shown. In the first cell of this figure, there is a near-crash event with no 

corresponding baseline event. The second cell in Figure 14 (top right) shows that, compared to his or her 

baseline speed profile, this driver was going at a higher speed just before the event happened. There is 

no apparent difference between the baseline speed and the speed before the event for the remaining 

two cases (lower left and lower right).  

It is not clear that speeding is a factor in each of the four cases shown. However, further investigation on 

the type of event, at other facility types and under heavier traffic conditions, would be required to make 

more solid inferences about the relationship of speed and likelihood of near-crash or crash events.  

Pre-Processing 

This section summarizes the analysis tools that were used to pre-process the data sets for analysis. 

Piecewise Linear Representation 

Researchers considered the application of Piecewise Linear Representation to discretize the time series 

into segments of known length and slope. To obtain these estimations, it is necessary to first assume 

that the time series of interest has some number of breakpoints whereby the segments between these 

points can be represented by a stable regression relationship. In the driving environment, this is a 

reasonable assumption. Given the two available inputs for the driver to adjust their speed (brake and 

gas), there is a set number of actions for a driver: accelerating, decelerating, and remaining constant.  

 

Figure 15. Reducing Time Series to Set of Linear Segments. 

 
In each of these states, a linear relationship can approximate the impact on the speed. Accordingly, a 

linear model with an unknown number of breakpoints is fit through the algorithm developed by Bai et al 

and implemented in R by Zeileis et al. [88]. A sample time series (TTC) is fit with these lines in Figure 15.  
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Each of the line segments above have a known length and slope. From this information, a letter can be 

assigned to the distinct combinations of length and slope. As pre-supposed about the driver behavior, 

there are three types of slope that can be observed (negative, relatively constant, and positive). 

Accordingly, a state name can be assigned to each of these distinct slopes. For the purposes of 

simplicity, the letters A, B, and C were assigned to each of these slope types, respectively. This tool will 

be considered in breaking down events into subevents of interest for analysis. 

Time Series Smoothing 

While there is a multitude of available methods to interpolate missing data and clean errors in time 

series, such adjustments must be done carefully and considering the fundamental properties of time 

series. In this exploratory analysis, two techniques were explored: LOcally weighted non-parametric 

regrESSion (LOESS) and Kalman filter. Figure 16 shows four TTC time series from the data set as a 

scatterplot and their respective interpolated counterparts as the solid line.  

  
(a) TTC Data 

  
(b) Speed Data 

Figure 16. Original and Cleaned Continuous Profiles.  
 

The Kalman smoothing algorithm functions in a series of steps. An initial estimate is developed for the 

state parameters in a forward pass, similarly to the traditional Kalman Filter. Following this step, a 

backwards pass estimate is conducted, and the error is minimized through Expectation Maximization. In 
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this manner, the various hidden causes for changes in speed can be accounted for and cleaned without 

prior knowledge of their influence on the speed curve. The Kalman smoother is known as a robust 

estimator in time series data and can account for sensor noise.  

With respect to LOESS, there are a few parameters that must be determined prior to its application to 

this data set, such as the function order to fit and the number of points to consider. Due to the 

curvilinear nature of the TTC profiles, a 2nd order polynomial was chosen. The second parameter, span, 

refers to the percentage of points that will be used in each regression step. Although optimization via 

bootstrapped samples would allow for the ideal span choice, the span choice should reflect the 

fundamental reaction ability of an individual to adjust their speed or braking behaviors. Accordingly, the 

span was chosen to align with research from Triggs et al. in a review of reaction times that shows the 

mean driver response time to an expected braking light stimuli of the leading vehicle is between 1.39–

1.45 seconds [89]. The span was chosen to be 1.4 seconds, or 14 data points in a 10 Hz time series. This 

was represented as a fraction of the overall time series, whose length varied by event. The resulting 

range of spans, expressed as proportion, was between .05 and .50. Although many researchers support 

the use of different span percentage until an ideal fit is found, the set length of time for the span allows 

for both the short and long-time series to be well-understood. Figure 16 shows two very different TTC 

profiles; the first has two main peaks and lasts almost 20 seconds, whereas the second is a little more 

than 4 seconds and features a large gap between data points. At first glance, the data from the right 

appear to be generated by two-separate time series, separated by a vertical displacement.  

 

  

(a) Three-Way Alignment (b) Cost Matrix and Alignment Path 

Figure 17. Dynamic Time Warping between Two TTC Curves. 
  

However, in manual observation of the individual points that comprise the TTC calculation, the root 

cause for the two series is relatively straightforward. For two vehicles in a car-following situation, the 

random noise in the sensor causes the observed vehicle’s speed to increase slightly more than its 

leading counterpart, the TTC will suddenly decrease. Similarly, if the observed vehicle’s speed decreases 

slightly more than its leading counterpart does, the TTC will suddenly increase as the two vehicles are 

separating. Thus, the seemingly bizarre result can be well-understood in the context of TTC.  
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Cluster Analysis and TTC 

Past research, such as that by Guo et al. and Quimby et al. [31, 53], acknowledged the potential for 

methods that can approximate natural groupings within the data set to provide clarity to the research 

effort. Clustering approaches include k-means clustering and CHAID. An alternative method to do 

clustering is named dynamic time warping (DTW). Researchers performed an exploratory DTW analysis. 

Guo et al.’s analysis applied a k-means clustering approach that uses aggregate single variable 

observations [90]. This approach is done in two steps: 1) the user determines the preset number of 

clusters, 2) the algorithm selects a random set of points from the data set corresponding to the 

predetermined number, 3) the algorithm calculates the internal differences and evaluates the total sum 

of squares for each cluster, and 4) the algorithm repeats the first three steps by adding new points to 

each cluster so that the total error within each cluster is minimized for several iterations. In another 

study, Quimby et al. applied CHAID to divide a set of cases into mutually exclusive groups [53]. The 

dependent variable in the analysis was five speed groups along a continuous spectrum (lowest speed to 

highest speed with five levels), and the influence of eight predictor variables (including psychological 

tests and age).  

In this analysis, the DTW method was applied using an open source package [91, 92] to investigate what 

factors seem to associate with differences in the time series characteristics. DTW is a method by which 

the dynamic programming algorithm finds the optimum warping path between two time series under a 

set of constraints. Figure 18 illustrates the warping done by the algorithm, with the purple lines 

showcasing the DTW distance between the two time series (black and red lines, respectively). 

 

 

Figure 18. Example of DTW between Two Series [92]. 
 

DTW applied to naturalistic driving behavior operational data may help determining factors influencing a 

given operational regime, potentially shedding light on the driver sensitivity factor (k) in microscopic 

simulation. Another result from this effort is a better understanding of the influential factors as 

determined by a natural grouping of the data. Final models generated by this project can aid in variable 

selection by the results from these clustered data. 
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Beyond the speed profile data, this exploratory analysis will apply this approach to TTC variable to 

investigate to what extent this variable can be studied in conjunction with speed profile data [93, 94, 

95]. 

Time Series Cluster Analysis 

To generate clusters, a given distance measure has to be established to evaluate similarity between any 

two time series. While many potential measures can be used, one of the more common, DTW methods 

will be applied. This method finds the optimal alignment between two temporal sequences, such that 

the overall cost of alignment is minimum. This is represented in Figure 17, which demonstrates the 

alignment between two time series. 

Figure 17a shows the three-way alignment plot for the time series. The query is the bottom time series, 

and the reference is the time series on the left. The cost for the given alignment between any two points 

on the query and reference index is shown by color intensity in Figure 17b. Red demonstrates the 

minimum cost path, whereas white would indicate the highest cost. The alignment takes the minimum 

cost path through the cost matrix on the right. While the DTW calculation provides a powerful way to 

compare two time series across a temporal stretch or distortion, it is a resource-intensive calculation. 

There are many methods available to speed up or fine-tune its performance, ranging from providing 

designated windows for the cost matrix search to adjusting the step parameters. Until more data can be 

tested and optimal windows found for TTC and speed profiles, a generic application will be able to find 

an appropriate alignment between the two curves.  

 

 
 

Figure 19. Phylogram of TTC and Speed Curves.  
 

From the DTW distance, Ward’s hierarchal agglomerative clustering is applied to clusters based on each 

of the DTW comparisons. This method has been used before to understand genetic and evolutionary 

progress across key indicators in different species. When two entities have a minimal pairwise 

difference, they are merged to the same group until each of these have been appropriately assigned to a 

cluster. The phylograms are shown in Figure 19. 
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(a) Cluster 1: Increasing TTC 

 
 

(b) Cluster 2: Constant with Peak TTC  

  
(c) Cluster 3: Decreasing TTC 

Figure 20. Examples of Clustered TTC Data.  
 

The blue line drawn on Figure 19 (left) shows the cut-off point for TTC to generate three clusters. The 

phylogram clearly becomes much denser beyond this line with 108, 217, and 79 events in the three 

clusters defined, respectively. The green line drawn on Figure 19 (right) similarly shows the two speed 

clusters. These were defined by merging the most similar events by their absolute value DTW distance 

along the alignment path. The result is three distinct clusters of TTC – increasing, constant with peak(s), 

and decreasing.  
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Within each cluster, there are simple examples of the cluster with minimal change in pattern over time. 

However, there are also multiple examples within each cluster that add more degrees of complexity to 

the classification dilemma. In Figure 19, there are two time series shown from each cluster of TTCs. The 

left time series represents the ideal shape from that cluster, whereas the right shows a much noisier or 

more complicated time series from within the same cluster.  

In Figure 20a, for example, the left curve has only a slight variation around seven seconds into the 

profile. While the overall trend is upward for the right curve, there is much more variation than in Figure 

20a with multiple changes up and down.  

Similarly, cluster 2 features constant TTC with sharp peaks. These sharp peaks indicate an increase in 

TTC, brought about by a speed increase of the lead vehicle or sudden braking by the following vehicle. In 

Figure 20b, the left image maintains a constant with only one major peak, whereas the right image has 

three. In Figure 20c, the left image shows a relatively smooth descent. Although Figure 20c on the right 

has a noticeable peak, the overall trend indicates that this time series is in fact decreasing. This occurs 

frequently in unsupervised time series clustering, with multiple events having characteristics of one 

dominant cluster and features of others.  

 

  
(a) Cluster 1: Increasing Speed 

  
(b) Cluster 2: Decreasing Speed 

Figure 21. Example of Clustered Speed Data. 
 

Figure 21 shows a similar pattern on the speed data. There are two logical clustered groups for the 

speed data in increasing and decreasing trends. In Figure 21a (left), the driver increased their speed 

smoothly over the course of the time series. In Figure 21a (right), the driver first decreased in speed 

before accelerating in two segments (100–150 and 170–200).  
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While both are generally increasing, there are semantically different actions taken by these two drivers. 

Similarly, in the decreasing speed cluster, Figure 21b (left) shows a steady decrease in speed while 

Figure 21b (right) shows several small variations along the way.  

Summary of Findings from Cluster Analysis 

Some logical patters were found by performing cluster analysis on both TTC and speed. Although it was 

possible to separate groups of time series in patterns that are indeed similar, these pattern 

categorizations still show enough heterogeneity to allow meaningful interpretations. 

The TTC analysis also showed that, given how the TTC is defined, discontinuities may occur when the 

two vehicles following reach the same speed (see Figure 20b), which would add complexity to the 

analysis. Researchers decided to perform further analyses on the speed data and back-calculate TTC as 

necessary for interpretation. 

Freeway SOC Analysis 

As a first step on the formal analysis, researchers investigated what factors associate with the SOC of 

participants. The SOC was defined as follows. From a filter of 761 events for analysis, researchers broke 

down all events (each up to 30 seconds) into car-following subevents (fractions of an event when a lead 

vehicle is identified in the radar track) and non-car-following subevents (fractions where no lead vehicle 

is present).  

Among the non-car-following subevents (i.e., the driver is not following another car), researchers 

filtered only those that have speed values with no significant changes (i.e., those whose variance in the 

speed readings did not exceed 4 m2/s2). After verifying that these speed profiles did look indeed flat, a 

subset of 254 subevents were identified. These events were considered samples representative of the 

SOC for these drivers because they were not following another car and they were not changing their 

speed. Two subsets were identified from these events: 253 subevents where most variables of interest 

were available and 77 where it was possible to match with RID elements. The RID provides key 

information about the context of the driver: speed limits, number of lanes, average width of lanes, etc. 

Therefore, researchers performed two analyses: 1) an analysis of the subevents that had most variables 

of interest but were not matched to the RID, and 2) an analysis of the subset of data that had RID 

matches. These analyses are presented in later sections of this chapter. The next section shows the 

model specification used for the analyses just described. 

Model Specification 

The methodology for analysis was mixed-effects model, as described in the prior chapter. This 

framework allows the inclusion of explanatory factors (i.e., fixed effects) that have been coded from the 

database and exogenous sources of variability (coded as random effects).  

The output of these models directly allows controlling for the variability associated with exogenous 

factors. Additionally, since the variability from every source of variance is estimated by the model, a 

comparison between exogenous sources and known explanatory factors is possible in terms of 

explained variability. 
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Gaussian Model for SOC 

As mentioned, researchers used a mixed model to investigate the variables that associate with 

variability of SOC in the data. The model parameterizes the mean of the conditional speed as a linear 

combination of several parameters as shown in Equation 1: 

𝑆𝑂𝐶𝑖𝑗𝑘 = 𝑿′ ∙ 𝜷 + [𝛼𝑖 + 𝛾𝑖𝑗] + 휀𝑖𝑗𝑘  Equation 1 

 
Where: 
 

 

𝑆𝑂𝐶𝑖𝑗𝑘 = Speed of Choice by the ith driver, jth event, kth subevent. 

𝑿 = Vector of fixed-effects explanatory factors. 
𝜷 = Vector of fixed-effects coefficients. 
𝛼𝑖 = Random effect for ith participant. 
𝛾𝑖𝑗  = Random effect for jth event from ith participant. 

휀𝑖𝑗𝑘  = Random error for kth subevent from jth event from ith participant. 

 

As shown in Equation 1, the model includes fixed and random effects, the former for global explanatory 

variables, the later for accounting for structures in the data of potentially correlated clusters of data 

(e.g., all data from one participant may look different as a set, to all data from another participant). 

The variance of the conditional mean is estimated as a single parameter independently of the mean. 

This parameter is simply the variance of the residuals between the raw data and the calibrated model, 

as shown in Equation 2: 

𝑉(𝑆𝑂𝐶𝑖𝑗𝑘) = 𝑉(휀𝑖𝑗𝑘) = 𝜎𝑟𝑒𝑠
2  Equation 2 

 
Where: 
 

 

𝑉(. ) = The variance of a random variable. 
𝜎𝑟𝑒𝑠

2  = The variance of the model residuals. Other variables as previously defined. 
 

The next section describes the modification of the variance model to account for the expected effect of 

multiple points per subevent.  

Heteroscedasticity in SOC Estimates 

The number of free-flowing subevents were not equal for all drivers. In some cases, almost all 

30 seconds were free-flowing, whereas in many others, a smaller subset of those segments was free 

flowing. Since there is no point in including multiple points per subevent that are basically the same 

number, researchers decided to use the average of such values to have one value per subevent.  

However, this decision yielded a data set comprising of averages estimated from different sample sizes. 

This implies that there is unaccounted heteroscedasticity because it is known that the average of a 

sample is an efficient estimate of the mean. In other words, it is reasonable to expect that SOC 

estimates are more accurate when they come from a larger set of points. To account for the implied 

heteroscedasticity, researchers specified a model with heteroscedastic variance as given in Equation 3: 
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𝑉(휀𝑖𝑗𝑘) = 𝜎0
2 ∙ 𝑛𝑖𝑗𝑘

−1  Equation 3 

 
Where: 
 

 

𝜎0
2 = The residual variance a datum is expected to have (estimated).  

𝑛𝑖𝑗𝑘 = The number of SOC readings available from each subevent.  

 

Stepwise Model Selection 

The components of the vector of predictors are individual variables available in the data set that are 

incorporated one at a time. To avoid overfitting the model (i.e., trying to estimate more information 

than is defensible, given the data), researchers informed the model selection with the Akaike 

Information Criterion (AIC), which is a metric of quality of information, given a statistical model and a 

data set. The AIC tends to increase when removing a variable contributing a large amount of information 

from the model fixed effect and when including a variable not contributing much information in addition 

to the variables already in the model. 

Free-flow Speed Choice without Posted Speed Limit Available 

After some exploratory analysis of the sites with RID matches, it became apparent that the PSL was 

probably the most critical variable from the RID. However, as described in the previous section, only 77 

subevents were available with this piece of information. Researchers decided to analyze the larger 

subset where RID data were not available first as described in this subsection. 

Researchers performed model selection in the first subset of 251 subevents to investigate what non-

age-related factors explain SOC better. This subset of subevents came from originally 150 different 

drivers and 182 events.  

Table 9 shows the estimates from the most parsimonious model resulting from this exercise. The 

baseline for the model is an average of 53.24 mph for drivers with no traffic violations, driving at LOS A1 

at 2-way divided highways with signals in the state of Florida. The residual variability of 5.39 mph 

indicates that the model can explain the SOC variability within that threshold, after accounting for 

everything else explicitly accounted for in the estimates. Among those factors explicitly accounted for in 

the model are the following: 

 Decreasing SOC with increasing LOS (a reduction of 5.9 mph for LOS B with respect to LOS A1, 

everything else equal. The 3.00 mph reduction for LOS A2 was not found statistically significant). 

 An increased SOC at freeways and highways with no signals (16.6 mph faster than highways with 

signals, everything else equal). 

 A decreased speed of choice (5.2 mph slower) among drivers from Washington, compared to 

drivers from Florida, other things equal. 

 A decreased SOC at one-way traffic facilities (7.3 mph slower), compared with two-way facilities, 

other things equal. 

 A higher SOC among drivers with at least one traffic violation (3.3 mph faster) compared to 

drivers with no traffic violations, other things equal. 
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Table 9. Initial SOC Model without Age Characteristics and PSL (n=254). 
Explanatory Variable Estimate Std. Error DF t-value p-value Signif. 

Baseline 53.24 mph 3.094 mph 148 17.2105 < 0.0001 *** 

LOS A2 −3.00 mph 2.558 mph 28 −1.1728 0.2508   

LOS B −5.88 mph 2.602 mph 28 −2.2578 0.0319 * 

Rural Freeway / Highway wo. 
Signals 

+16.56 mph 2.822 mph 28 5.8678 < 0.0001 *** 

Urban highways +2.48 mph 10.522 mph 28 0.2359 0.8152   

Washington State −5.20 mph 1.429 mph 148 −3.6402 0.0004 *** 

One-way Traffic −7.25 mph 3.504 mph 28 −2.0702 0.0478 * 

At least 1 traffic violation +3.31 mph 1.404 mph 148 2.3561 0.0198 * 

Unaccounted Variability among 
Participants  

±0.001 mph Notes: Baseline level is defined as 
drivers with no traffic violations, LOS 
A1 at 2-way Divided Signalized Rural 
Highways in Florida. 

Unaccounted Variability among 
Events per participant 

±8.298 mph 

Residual Variability ±5.389 mph 

Significance levels are as follows: 
 * = Significant at the 0.05 level 
 ** = Significant at the 0.01 level 
 *** = Significant at the 0.001 level 

 

The model results also indicate three levels of unaccounted variability (i.e., reported as random effects 

variance) that are of interest to this research: 

 The unaccounted variability among participants is the amount of variance in the data that 

remains unaccounted among participants after all other sources of variability in the model have 

been discounted (including residuals and variability between events). As indicated in Table 9, 

virtually no differences between participants remain after accounting for everything else in the 

model. 

 Similarly, ±8.298 mph is the variability resulting from differences between events of a single 

driver, everything else equal. This is a large amount of unaccounted variability without any more 

information than the observation that different non-following driving events from the same 

driver tend to have very different SOCs. Researchers interpret this result as an indication that 

important sources of variation are absent from this model, such as driver characteristics and 

driving context elements (e.g., PSL).  

 Finally, the residual variability of the model is ±5.389 mph indicating the average expected error 

of predictions after discounting everything else in the model (including the two estimates of 

unaccounted variability discussed in the prior two points). 

Next, researchers performed a second round of model selection using the model in Table 9 as a starting 

point but now including age groups and other driver-specific factors (e.g., distraction types and levels, 

vision conditions self-declared by participants) as potential explanatory variables. The resulting model 

from this exercise (shown in Table 10) clearly has an improved ability to account for variability in the 

data. 
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Although distraction types similar to those defined in past research [70] were used in the model 

selection process, these variables did not contribute improving the model information quality and were 

not included in the most parsimonious model shown in Table 10. 

Table 10. SOC Model Including Age Characteristics without PSL (n=254). 
Explanatory Variable Estimate Std. Error DF t-value p-value Signif. 

Baseline 51.81 mph 2.783 mph 145 18.6187 < 0.0001 *** 

LOS A2 −2.13 mph 2.040 mph 27 −1.0454 0.3051   

LOS B −5.29 mph 2.082 mph 27 −2.5428 0.017 * 

Rural Freeway / Highway wo. 
Signals 

+17.73 mph 2.276 mph 27 7.7891 < 0.0001 *** 

Urban highways +3.75 mph 8.775 mph 27 0.4271 0.6727   

Washington State −5.61 mph 1.162 mph 145 −4.8286 < 0.0001 *** 

One-way Traffic −5.52 mph 2.849 mph 27 −1.9390 0.063 # 

Select Vision Conditions −5.80 mph 1.236 mph 145 −4.6947 < 0.0001 *** 

Driver 24 years of age or 
younger 

+5.71 mph 1.432 mph 145 3.9859 0.0001 *** 

Driver 45 years of age or 
older 

+3.00 mph 1.450 mph 145 2.0678 0.0404 * 

Remaining Variability among 
Participants 

±0.001 mph Notes: Baseline level is defined as 
drivers without select visual 
conditions between 25 and 44 years of 
age, LOS A1 at 2-way Divided 
Signalized Rural Highways in Florida. 

Remaining Variability among 
Events per participant 

±6.493 mph 

Residual Variability ±4.969 mph 

Significance levels are as follows: 
 # = Significant at the 0.10 level 
 * = Significant at the 0.05 level 
 ** = Significant at the 0.01 level 
 *** = Significant at the 0.001 level  

 

As it can be seen in Table 10, the model includes a statistically significant effect for drivers with a set of 

vision conditions. Researchers determined this list of conditions to include the following: 

 Objects far away are blurry when not wearing corrective lenses (e.g., nearsighted). 

 Poor night vision. 

 Reading glasses needed. 

 Reading glasses needed; Glaucoma; Poor night vision. 

Researchers determined this list of conditions by identifying the extreme partial residuals from an 

intermediate model between those in Table 9 and Table 10 that included the full list of conditions 

available from the data set. The most parsimonious model resulted from aggregating these conditions 

under the variable shown in Table 10 since each of these conditions had a very similar deviation in their 

partial residuals. The three mutually exclusive sets of age groups in Table 10 were determined in a 

similar way as just described for the select vision conditions. Next appears a brief discussion of the 

results in the expanded model (Table 10). 
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The baseline for the model in Table 10 is an average SOC of 51.8 mph for drivers of ages 25 to 44 years, 

with no visual adverse conditions, driving at LOS A1 on 2-way divided highways with signals in the state 

of Florida. This baseline SOC is very similar to that from the initial model (53.2 mph). The residual 

variability in the expanded model reduced to 4.97 mph in the expanded model from to 5.39 mph in the 

initial model. This reduction corresponds to a 15 percent decrease in residual variance, which means 

that the model in Table 10 produces predictions 15 percent less imprecise compared to Table 9. Among 

the factors explicitly accounted for in the expanded model are the following: 

 Similar to the initial model, a decrease in SOC relates with an increasing LOS (a reduction of 

5.29 mph for LOS B with respect to LOS A1, everything else equal. Also similar to the initial 

model, the 2.12 mph reduction for LOS A2 was not found statistically significant). 

 An increased SOC at freeways and highways with no signals (17.7 mph faster than highways with 

signals, everything else equal). This estimate is very comparable to the 16.6 mph increase in the 

initial model. 

 Also, like the initial model, a decreased SOC (5.6 mph slower) among drivers from Washington, 

compared to drivers from Florida, other things equal. 

 A decreased SOC at one-way traffic facilities (7.3 mph slower), compared with two-way facilities, 

other things equal. 

 Drivers with vision conditions as explained above, chose speeds significantly lower, other things 

equal (a reduction of 5.80 mph in SOC for this group of drivers). 

 Both younger drivers (17 to 24 years of age) and older drivers (ages 45 to 80 years) tend to 

choose faster speeds than drivers in the group of reference (between 25 and 44 years of age). 

On average, younger drivers chose speeds 5.71 mph faster than the group of reference; on 

average, older drivers chose speeds 3.00 mph faster than the group of reference. 

 Interestingly, the higher SOC by drivers with at least one traffic violation compared to no traffic 

violations in the initial model (3.3 mph faster) was not found significant in the expanded model 

that included driver age and vision conditions. Although this result may indicate 

confoundedness between age, vision conditions, and history of traffic violations, researchers 

assess that it most likely can be explained by a limited statistical power in the model, given the 

sample size and the amount of unexplained variation. Simply put, a sufficiently large sample size 

would likely find all these effects statistically significant if this is indeed the explanation. 

Similar to the initial model, the expanded model also indicates three levels of unaccounted variability of 

interest to this research: 

 Similar to the initial model, the unaccounted variability among participants remains virtually not 

existent after accounting for everything else in the model and given the residual variability of 

the model. 

 In contrast with the ±8.298 mph remaining variability between events for a single driver in Table 

9, the expanded model indicates a reduced amount of variability between events (±6.493 mph, 

per Table 10). This is significant reduction of unaccounted variability between events from the 

same driver in explaining their speeds of choice. Researchers interpret this reduction as direct 

effect of incorporating the age and vision conditions among the explanatory variables. These 

factors appear to be additional key sources of variation are absent from this model. Regardless, 

since the expanded model does not include PSL, researchers anticipate that the amount of 
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remaining variability between events can still potentially reduce significantly for the subset of 

data where PSL is available.  

As the following step in the analysis, researchers fitted models to the subset of subevents that could be 

matched to the corresponding RID segments. 

Free-flow Speed Choice with Posted Speed Limit Available 

As mentioned earlier in this chapter, the PSL could be matched to only 77 subevents from 45 different 

events and 46 participants. Like the modeling described in previous section, researchers fitted an initial 

full model without including driver characteristics first and performed stepwise model selection. This 

exercise resulted in a model with only three explanatory variables: traffic density, PSL, and functional 

class as shown in Table 11. 

Table 11. Initial SOC Model with PSL (n=77). 
Explanatory Variable Estimate Std. Error DF t-value p-value Signif. 

Baseline 48.69 mph 6.047 mph 42 8.0516 < 0.0001 *** 

LOS A2 −1.81 mph 2.542 mph 42 −0.7101 0.4816   

PSL +0.30 mph 0.087 mph 30 3.4236 < 0.0001 *** 

Minor Collector −10.22 mph 2.488 mph 42 −4.1092 0.0002 *** 

Variability among 
Participants 

±0.001 mph 
Notes: Baseline level is 
defined as drivers of all ages 
on Arterials and Major 
Collector Freeways and 
Highways at LOS A1 in 
Florida and Washington. 

Variability among Events ±4.745 mph 

Residual Variability 
±3.926 mph 

Significance levels are as follows: 
 # = Significant at the 0.10 level 
 * = Significant at the 0.05 level 
 ** = Significant at the 0.01 level 
 *** = Significant at the 0.001 level  

 

The most salient features of this model are 1) the size of the residual variability (±3.93 mph), which is 

significantly smaller than the best model without PSL (±4.96 mph), which clearly indicates how 

important PSL is as an explanatory variable for SOC; and 2) the larger standard error for the model 

estimates, which implies a reduced statistical power for models on this reduced sample of sites.  

Next, researchers performed another round of model selection now considering driver characteristics as 

potential explanatory variables. The resulting model is very similar to the initial model with PSL and is 

shown in Table 12. As it can be seen, only one additional term entered the model and its significance 

and impact on unexplained variability are minimal. 

Conspicuously, factors identified on the models in Table 9 and Table 10 as influential on SOC were not 

found significant contributors on the PSL models (Table 11 and Table 12). This is likely the result of the 

two salient features of these later models, as described above: reduced statistical power due to reduced 

sample size and the inclusion of a factor (PSL) that is more influential than those on earlier models. 
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Regardless, of these salient differences, the variables in common to both sets of models are consistent 

with each other (i.e., estimates with similar magnitudes and signs). The next section presents a 

performance comparison between the expanded models described in this section. 

Table 12. Expanded SOC Model with PSL (n=77). 
Fixed Effect Level Estimate Std. Error DF t-value p-value Signif. 

Baseline 47.64 mph 5.962 mph 41 −0.8773 < 0.0001 *** 

LOS A2 −2.16 mph 2.458 mph 41 −0.8773 0.3854   

PSL +0.29 mph 0.086 mph 30 3.398567 0.0019 ** 

Minor Collector −10.64 mph 2.444 mph 41 −4.355129 0.0001 *** 

Number of Years Driving +0.07 mph 0.038 mph 41 1.783977 0.0818 # 

Variability among Participants ±0.001 mph Notes: Baseline level is defined as 
drivers of all ages on Arterials and 
Major Collector Freeways and 
Highways at LOS A1 in Florida and 
Washington. 

Variability among Events ±4.503 mph 

Residual Variability ±3.957 mph 

Significance levels are as follows: 
 # = Significant at the 0.10 level 
 * = Significant at the 0.05 level 
 ** = Significant at the 0.01 level 
 *** = Significant at the 0.001 level  

 

The association with regulatory speed limit appears straightforward: higher PSL implies naturally higher 

SOC. However, SOC tend to be larger than PSL at lower PSLs. SOC and PSL tend to agree at larger PSL as 

shown in Figure 22. 

The blue dashed line is the 1:1 correspondence. The SOC tend to be above the blue dashed line at lower 

speeds but it converges with speed limit at higher speeds. The symbols and segment lines indicate data 

from different participants. The same driver would prefer a different free-flow speed for different PSL. 

There are linear trends drawn in Figure 22 to indicate groups of data from a common participant. Three 

out of four of these trends clearly indicate an increasing SOC with increasing PSL.  
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Figure 22. Speed Choice vs. PSL. 
 

Next, researchers prepared a comparative assessment of performance for both SOC expanded models 

developed (i.e., with PSL and without PSL). Figure 23 displays this graphical assessment. Predictions 

were estimated for every data point in the data set with the complete set of predictors from each model 

readily available.  

Again, the color-coding indicates groups of data points for different participants. The first two rows in 

this figure show the model fitted values. That is, the model’s estimates for all subevents used to fit the 

SOC models; the lower two rows show how the SOC predictions compare to actual speeds at events that 

were not used in the SOC models (i.e., events that did not meet the definition of non-following, free-

flowing conditions).  

It is not surprising that sections (c) and (d) of Figure 23 clearly show a worse performance than sections 

(a) and (b), respectively, not only because these are predictions beyond the data used to fill the models, 

but also because the data set for which the predictions were cast include car-following events as well. 

Regardless of the anticipated lesser performance, the relative good correspondence between the 

predictions and the actual speeds is noteworthy.  

Summary of Findings 

Researchers had two objectives to analyze the SOC using free-flow subevents. One was to identify the 

most influential factors on SOC. The other was to investigate how accurately the SOC could be predicted 

to use these predictions in subsequent analyses. 
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Influential Factors on SOC 

The analysis intended to explore what factors are most influential to drivers’ SOC. Researchers 

attempted to merge the time-series data with the RID to include variables known to be influential in the 

analyses: functional class and PSL. Unfortunately, only a small subset of the time-series data could be 

matched to the RID. For this reason, researchers performed two analyses: a) one for the larger subset of 

data that could not be matched to the RID (thus not including PSL as a potential predictor); and b) one 

for the smaller subset that could be matched to the RID allowing PSL and functional class be included 

among the potential explanatory variables. 

(a) Fitted values Model with PSL

 

(b) Fitted values Model without PSL 

 
(c) Predictions from Model with PSL 

 

(d) Predictions from Model without PSL 

 
Figure 23. Comparative Performance of SOC Models. 

 

From the analysis of SOC in the larger subset (where PSL was not available), researchers identified six 

factors that better explain the variability in SOC among drivers represented in this subset. Four of these 

factors are not related to the driver’s characteristics:  

 The LOS of the traffic flow relates inversely with SOC. 

 Facilities of higher order (i.e., freeways and highways with uninterrupted flow) tend to have 

larger SOC, most likely because the effect of PSL is confounded with these facilities. 

 Drivers in the state of Washington had lower SOC (but this could also indicate that the events 

from that state occurred on roads with lower PSL). 

 One-way facilities also had lower SOC (but confoundedness with PSL could be the underlying 

cause, like the prior point). 
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Two of these influential factors did relate to driver characteristics: 

 Drivers who are nearsighted, with poor night vision, in need of reading glasses or glaucoma 

tended to choose lower SOCs than drivers without those conditions. 

 Drivers 24 years of age or younger and drivers 45 years of age or older tended to choose higher 

SOCs than drivers of other ages. 

Researchers verified that including the last two terms in the model had a significant impact in the 

performance of the model: a reduction of the amount of residual variance (i.e., unexplained variability) 

and a reduction on the variability remaining among events from the same participant after accounting 

for everything else in the model. Researchers conclude that visual conditions and driver age are 

significant influential variables in drivers’ SOC. 

From the analysis of SOC in the smaller subset (where PSL was available from matched RID segments), 

researchers identified four factors that better explain the variability in SOC among drivers represented 

in this subset. Three of these factors are not related to the driver’s characteristics:  

 The PSL was found the most influential variable on SOC. The relationship was found to be of 

direct proportion (i.e., increasing SOC with increasing PSL). 

 The LOS of the traffic flow relates inversely with SOC (but was not found statistically significant). 

 Facilities of higher order (i.e., arterials and major collectors) tend to have higher SOCs. This, 

after accounting for the impact of PSL, suggests that the cause is other characteristics associated 

with the functional class. Researchers speculate that driver environment and other geometric 

cues could be the reason for this association with functional class. 

Differences between states and between one-way and two-way facilities were not found meaningful 

after accounting for PSL. This is consistent with the hypothesis that those effects were masking the 

influence of PSL in the model where PSL was not available. 

The only influential factor related to driver characteristics is discussed next—the number of years of 

driving associated with an increased SOC in the model that included PSL. This finding implies a 

monotonic relationship between SOC and driving experience. In contrast, the model without PSL 

suggested a U-shaped relationship: younger and older drivers tend to choose faster speeds. Researchers 

speculates that the reason for this contrast is the small sample size to which the model with PSL was 

fitted. A larger sample of data with PSL more representative of younger drivers could potentially yield 

results that are compatible with the findings from the model with no PSL. 

Researchers verified that including the last terms in the PSL model almost had no impact in the 

performance of the PSL model. Researchers again speculate that sample size may be the reason for 

significantly lower statistical power, compared to the model without PSL. Researchers conclude from 

this analysis that PSL, geometry, and traffic characteristics are the most influential factors on SOC, and 

that driver characteristics may improve performance prediction marginally thereafter. However, the 

analysis of subevents that did not include PSL suggests that enough statistical power to detect the 

influence of driver characteristics on SOC probably requires tripling the sample size (from 77 to 254). 

More research is needed that analyzes SOC for a larger sample of data that includes PSL and other 

geometric characteristics from the RID. 



56 

SOC Prediction Performance 

Regardless of the influential factors identified in the previous section, researchers verified graphically 

that the prediction of SOCs from both models (with and without PSL) seem to be reasonable 

approximations of the actuals speeds of events. As can be seen in Figure 23(c) and (d), the predictions 

for events with known PSL tend to be more accurate and precise, whereas the predictions from events 

without known PSL tend to be more dispersed and biased toward smaller values (i.e., a tendency to 

under-predict). 

Freeway Driver Car-Following Performance 

After finalizing the SOC analyses, researchers filtered car-following subevents for analysis. A car-

following subevents is defined as the portion of driving that was coded as having a lead vehicle present. 

The next sections describe an exploratory analysis of the data and the selection and refinement of a 

dynamic model specification for the formal analysis. 

Exploratory Analysis of Driver Car-Following Behavior 

Researchers started by examining at the relationships between dynamic variables to gain insights about 

the characteristics of those relationships and how to best account for them in the formal dynamic model 

analysis. Figure 24 shows the relationship between pairs of time series from a typical car-following 

subevent in the data set. 
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(a) Follow and lead speeds vs. time 

 

(b) Follow speed and gap vs. time 

 
(c) Follow speed and relative speed vs. time 

 

(d) Follow acceleration gap vs. time 

 
Figure 24. Comparison of Various Pairs of Time Series from a Single Car-Following 

Subevent. 

Figure 24a shows there seems to be a moderate relationship of codependence between follow and lead 

speed (i.e., clearly codependent but with some degree of variability that seems marginal to the 

relationship).  

Figure 24b shows a cleaner relationship between the two time series (follow speed and gap) and a very 

clear lead of the gap to the speed (i.e., the gap reaches peak and valley points before the speed does). In 

a causal analysis framework, this lag suggests that the gap could be an antecedent to the speed (the 

consequent). 

The relationship shown in Figure 24c is the weakest shown in Figure 24. In other words, the two time 

series (follow speed and relative speed) do not seem to follow each other. However, the relative speed 

time series seem to oscillate around an approximately flat line, which suggests that there is a tendency 
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to maintain a constant relative speed and that corrections to deviations tend to follow quickly 

thereafter. 

Finally, Figure 24d shows a rather strong association between follow acceleration and gap. In contrast 

with Figure 24b, the acceleration seems to have a slight lead on the gap, which indicates that the gap is 

a consequent to the acceleration. This is expected just from the kinematic relationship between the 

variables, but both Figure 24b and Figure 24d stress the dynamic nature of the relationships, in some 

instances leading and in some others lagging. 

 

Figure 25. Probability of Speed and Gap Cointegration by Average Speed and SOC. 
 

Given some of the codependence suggested by the visual inspection of the data, researchers decided to 

run the Granger’s causality test, which is a statistical test on the scope and degree of the lead/lag 

relationship for the car-following speed and gap time series in a subset of randomly selected car-

following subevents. Researchers observed results that suggested a causality relationship for lags up to 

4 seconds. 

Researchers performed an additional test in the relationship between the car-following speed and the 

gap on the complete data set of car-following subevents. The test performed is ADF, and it yields the 



59 

probability of two series being cointegrated [83]. The degree of cointegration indicates how much the 

two series tend to vary together.  

Figure 25 shows an inverse relationship between the probability of cointegration and car-following 

speed. However, a relationship between P(cointegration) and average SOC is not apparent.  

 

Figure 26. Probability of Speed and Gap Cointegration by Speed Differential from SOC. 
 

The mild trend in Figure 25 toward a reduced likelihood of cointegration may be due to reduced 

variability expected at higher speeds, which researchers consider likely given that the maximum length 

of a subevent is 30 s; such a small window of time is less likely to capture the variability of a trip at a 

higher speed.  

Similar to the prior trend, Figure 26 shows a clearer inverse relation between the probability of 

cointegration and the speed differential between the car-following speed and the SOC. The probability 

of cointegration seems larger when the differential is negative and large in magnitude. This relationship 

is potentially useful in the sense that may indicate that drivers could be adjusting their operating speed 

and gap more actively (thus, more cointegration would be expected between the series) when they are 

following a lead vehicle but at a speed lower than the SOC. 
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The higher the ADF probability is, the larger the commonality between the time series, which does not 

necessarily indicate a causal relationship because there is no direction associated with the probability 

given. Researchers anticipated treating the underlying assumption of causality when treating leads and 

lags observed in this exploratory analysis explicitly in a dynamic model, as the following section 

describes in more detail. 

Dynamic Mixed Model for a Kinematic Variable 

For the analysis of car-following events, researchers chose to specify a dynamic mixed-effects model for 

kinematic variables time series. The general form researchers initially decided to use on car-following 

speed is shown in Equation 4: 

𝑆𝑝𝑒𝑒𝑑𝑖𝑗𝑘(𝑡) = 𝑿′ ∙ 𝜷 + 𝑑𝑚𝑚𝑖𝑥𝑒𝑑 (𝒁𝒊𝒋𝒌
′ (𝑡) ∙ 𝜽, 휀𝑖𝑗𝑘(𝑡)) Equation 4 

 
Where: 
 

 

𝑆𝑝𝑒𝑒𝑑𝑖𝑗𝑘(𝑡) = Instantaneous Speed for the ith driver, jth event, kth subevent, at epoch t. 

𝑿 = Vector of fixed-effects explanatory factors. 
𝜷 = Vector of fixed-effects coefficients. 

𝒁𝒊𝒋𝒌(𝑡) = Vector of dynamic explanatory factors (fixed and random effects) at epoch 
t for kth subevent in jth event from ith participant. 

𝜽 = Vector of dynamic coefficients (fixed and random effects). 
𝑑𝑚𝑚𝑖𝑥𝑒𝑑(. ) = Dynamic model (i.e., time-dependent) including both fixed and random 

effects. 
휀𝑖𝑗𝑘(. ) = Correlation structure of the residual errors.  

 

One important assumption underlying Equation 4 is that of a stationary process, meaning that the 

response variable varies dynamically around a long-term average. After a few preliminary runs, 

researchers determined that this assumption was clearly violated. A time series under this situation is 

known as an integrated time series. In the arena of time-series analysis, this can be remedied by 

differentiating the time series recurrently, as necessary, until a stationary time series is obtained for 

analysis. The analysis from such time series can then be integrated recurrently to obtain estimates and 

answer questions about the original variable of interest. 

Researchers then decided to fit the subsequent models on the acceleration series and determined that 

the stationary condition was satisfied at the first-derivative level. The next section provides more details 

about the specification of the acceleration models. 

Acceleration Model Specification 

Given that the car-following speed is an integrated process, researchers developed statistical dynamic 

models for the car-following acceleration as the response variable. The general formulation of these 

models is: 

𝐴𝑐𝑐𝑒𝑙𝑖,𝑗,𝑘(𝑡) = 𝑿′ ∙ 𝜷 + 𝑑𝑚𝑚𝑖𝑥𝑒𝑑 (𝒁𝒊,𝒋,𝒌
′ (𝑡) ∙ 𝜽, 휀𝑖𝑗𝑘(𝑡)) Equation 5 

Where:  
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𝐴𝑐𝑐𝑒𝑙𝑖𝑗𝑘𝑙(𝑡) = Instantaneous Acceleration for the ith driver, jth event, kth subevent, and 
epoch t. Other variables as previously defined. 

 

As mentioned earlier, the dynamic submodel is defined in a flexible way, so that the dynamic variables 

may enter the model either as fixed or random effects, depending on the quality of information (per the 

AIC) and the appropriateness of specifying them as random effects (per the result of a Hausman test). 

Given the results of the exploratory analysis, researchers determined to define the dynamic submodel to 

include a monotonic function of a family of lags in the car-following gap time series as shown in 

Equation 6: 

𝑑𝑚𝑚𝑖𝑥𝑒𝑑 (𝒁𝒊𝒋𝒌𝒍
′ (𝑡) ∙ 𝜽, 휀𝑖𝑗𝑘(𝑡)) = 𝑓[𝐿, 𝑔𝑎𝑝𝑖𝑗𝑘(𝑡), 𝑎𝑔𝑒, 𝑆𝑂𝐶, 𝜽] + 휀𝑖𝑗𝑘(𝑡) Equation 6 

Where:  
𝑓[. ] = Function specification for the dynamic model. 
𝐿 = Lag operator for time series. 

𝑔𝑎𝑝𝑖𝑗𝑘(𝑡) = Distance gap between following and lead vehicle at epoch t for kth 
subevent in jth event from the ith participant. 

𝑎𝑔𝑒 = Age class of participant, defined as the center of the class originally coded 
in NDS. Other variables as previously defined. 

 

The definition in Equation 6 specifies a function with parameters that account for gap and age, given 

that the intent of this research is to review driver characteristics and performance, as well as the 

differences in performance by age documented in the literature review. When specifying the dynamic 

model, researchers intend to test the hypothesis that differences may exist in car-following behavior by 

age group.  

Hierarchical Structure and Monotonic Decay in the Dynamic Submodels 

Various examinations of multiple car-following subevents strongly suggested that the relationship 

between car-following gap, speed and acceleration is stronger at short range and decays quickly with 

increasing gaps. After exploring different approaches to account for this feature appropriately (i.e., 

strong relationship at short gaps, monotonic decay for increasing gaps), researchers selected a 

logarithmic transformation as the best performing in preliminary tests. 

Additional to the logarithmic decaying influence of gap on acceleration, researchers specified a 

hierarchical structure similar to that in Equation 1 but also including hierarchical structure in the 

influence dynamic relationship as well. 

As shown in Equation 5 and Equation 6, the vector of coefficients for the dynamic model is estimated as 

the weights from a linear combination of the components vector Z comprised of dynamic variables. 

Equation 7 shows the composition of vector Z. 
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𝒁𝒊𝒋𝒌𝒕 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
1

𝐿𝜔1 ∙ ln 𝑔𝑎𝑝𝑖𝑗𝑘(𝑡)

𝐿𝜔2 ∙ ln 𝑔𝑎𝑝𝑖𝑗𝑘(𝑡)

𝐿𝜔3 ∙ ln 𝑔𝑎𝑝𝑖𝑗𝑘 (𝑡)

𝐿𝜔4 ∙ ln 𝑔𝑎𝑝𝑖𝑗𝑘 (𝑡)

𝐿𝜔1 ∙ 𝑟𝑒𝑙 𝑠𝑝𝑒𝑒𝑑𝑖𝑗𝑘(𝑡)

𝐿𝜔2 ∙ 𝑟𝑒𝑙 𝑠𝑝𝑒𝑒𝑑𝑖𝑗𝑘(𝑡)

𝐿𝜔3 ∙ 𝑟𝑒𝑙 𝑠𝑝𝑒𝑒𝑑𝑖𝑗𝑘(𝑡)

𝐿𝜔4 ∙ 𝑟𝑒𝑙 𝑠𝑝𝑒𝑒𝑑𝑖𝑗𝑘(𝑡)

𝐿𝜔1 ∙ 𝑆𝑂𝐶 𝑑𝑖𝑓𝑓𝑖𝑗𝑘(𝑡)

𝐿𝜔2 ∙ 𝑆𝑂𝐶 𝑑𝑖𝑓𝑓𝑖𝑗𝑘(𝑡)

𝐿𝜔3 ∙ 𝑆𝑂𝐶 𝑑𝑖𝑓𝑓𝑖𝑗𝑘(𝑡)

𝐿𝜔4 ∙ 𝑆𝑂𝐶 𝑑𝑖𝑓𝑓𝑖𝑗𝑘(𝑡)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Equation 7 

Where:  
𝜔1 = Fixed superscript for lag operator in 𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 1 submodel. 
𝜔2 = Fixed superscript for lag operator in 𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 2 submodel. 
𝜔3 = Fixed superscript for lag operator in 𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3 submodel. 

𝜔4 = Fixed superscript for lag operator in 𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 4 submodel. 

𝑟𝑒𝑙 𝑠𝑝𝑒𝑒𝑑𝑖𝑗𝑘(𝑡) = Relative speed (lead speed minus follow speed) at epoch t, for ith 
participant, at jth event, at kth subevent. 

𝑆𝑂𝐶 𝑑𝑖𝑓𝑓𝑖𝑗𝑘(𝑡) = SOC differential (SOC minus follows speed) at epoch t, for ith participant, at 
jth event, at kth subevent. All other variables as previously defined. 

 

Only one of the three gap terms and one of the relative speed terms in the vector of dynamic variables 

are applicable for a given combination of indices i, j, and k (i.e., mutually exclusive submodels). Equation 

8 shows the set of coefficients that account for this proposed hierarchical structure. 

𝜽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛼𝑖

𝛾𝑖𝑗

𝜏𝑖𝑗𝑘

𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 1

𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 2

𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3

𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 4

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 1 

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 2

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 4

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 1

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 2

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 4 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Equation 8 
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Where:  
𝛼𝑖 = Random adjustment to the acceleration baseline for the ith participant. 
𝛾𝑖𝑗  = Random adjustment to the acceleration baseline for jth event from the ith 

participant. 
𝜏𝑖𝑗𝑘  = Random adjustment to the acceleration baseline for kth subevent in jth 

event from the ith participant. 
𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 1 = Gap coefficient for age class 1 dynamic submodel. 

𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 2 = Gap coefficient for age class 2 dynamic submodel. 

𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3 = Gap coefficient for age class 3 dynamic submodel. 

𝜑𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 4 = Gap coefficient for age class 4 dynamic submodel. 

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 1 = Relative speed coefficient for age class 1 dynamic submodel. 

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3 = Relative speed coefficient for age class 2 dynamic submodel. 

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3 = Relative speed coefficient for age class 3 dynamic submodel. 

𝜌𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 4 = Relative speed coefficient for age class 4 dynamic submodel. 

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 1 = SOC differential coefficient for age class 1 dynamic submodel. 

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 2 = SOC differential coefficient for age class 2 dynamic submodel.  

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 3 = SOC differential coefficient for age class 3 dynamic submodel. 

휁𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 4 = SOC differential coefficient for age class 4 dynamic submodel. All other 
variables as previously defined. 

Error Structure Submodel 

When handling time series data, it is very important to consider explicitly the likely codependence 

between observations close in time. This need is more critical for situations of higher granularity in the 

time scale as is the case in this study. 

The mixed-effects framework proposed by Pinheiro and Bates [84] is compatible with and allows the 

implementation of time series methods to account for error correlation structures. The general 

modeling structure permits to account for three types of data features explicitly: 1) variables treated as 

fixed effects, which are expected to have global effects that are not time-dependent (e.g., facility type, 

number of lanes, PSL, age groups); 2) variables treated as random effects, which can account for clusters 

or hierarchical structures in the data; and 3) specific types (i.e., structures) of time-dependency in the 

errors for a time series at any level of the data set hierarchical structure. 

For this particular research, researchers implemented and tested the performance of an error structure 

at the lowest level of the hierarchical structure in the data. The methods implemented are those widely 

accepted and used in modeling time series modeling originally proposed by Box et al. and Tiao and Box, 

[96, 97]. 

The general model framework is known as Auto Regressive Integrated Moving Average (ARIMA) 

modeling. This error specification accounts for the degree to which a given value in the time series is 

determined by prior values in the time series. Although researchers found a level 1 integration in the 

car-following speed time series, researchers controlled for such integration by choosing to analyze the 

first time derivative of the speed (i.e., the acceleration) instead. Therefore, researchers considered only 

ARMA for the time structure (without the “I” in ARIMA). Equation 9 shows the general form of the error 

structure under the ARMA specification. 
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휀(𝑡) = ∑ 𝛿𝑢 ∙ 𝐿𝑢휀(𝑡)

𝑝

𝑢=1

+ ∑ 𝜗𝑣 ∙ 𝐿𝑣𝜙(𝑡)

𝑞

𝑣=1

+ 𝜙(𝑡) Equation 9 

Where:  
휀(𝑡) = Acceleration residual at epoch t. 
𝛿𝑢 = Coefficient for 𝐿𝑢휀(𝑡) in the combination of lagged residuals in ARMA 

model. 
𝜗𝑣 = Coefficient for 𝐿𝑣𝜙(𝑡) in the combination of lagged residual nuances in 

ARMA model. 
𝐿𝑢휀(𝑡) = Lag u of residual time series [i.e., 𝐿𝑢휀(𝑡) = 휀(𝑡 − 𝑢)]. 
𝐿𝑣𝜙(𝑡) = Lag v of residual nuance time series [i.e., 𝐿𝑣𝜙(𝑡) = 𝜙(𝑡 − 𝑣)]. 

P = Largest lag in the autoregressive part of the ARMA model. 
q = Largest lag in the moving average part of the ARMA model. Other variables 

as previously defined. 
 

The error structure of the model is such that 𝐸[𝜙(𝑡)] = 0 and 𝑉[𝜙(𝑡)] = 𝜎0
2. The expected variance is 

estimated along with the rest of parameters in the model. 

Discussion on Dynamic Model 

A subset of variables defines the dynamic model proposed: car-following speed, car-following 

acceleration, lead speed, relative speed, and gap. These five are variables of state so that the kinetic 

state of the car-following process is defined by the current value of these variables. 

The model specification is such that the acceleration is the response and other variables are specified as 

explanatory in the model. However, the dynamic nature of the model and the error correlation structure 

imply that a future state in the car-following process is a direct result of both past values of the response 

and levels in the set of explanatory variables. Therefore, all past configuration and state variables are 

explanatory for subsequent states of the system.  

Modeling Process 

In the modeling process, researchers considered various competing specifications in the dynamic 

submodels. The two key time series variables researchers decided to use are the gap between following 

and lead vehicles and the relative speed between them. The reason for electing these two is that they 

jointly define the state of the car-following system (two cars). Therefore, these variables should capture 

the information a driver has available for deciding what the appropriate acceleration should be. Also, 

results from such a model can be translated in terms of TTC because the state of the system is 

determined. This feature could then allow comparing the results to past research focused on TTC as a 

metric. However, researchers imposed the condition that both time series of interest (gap and relative 

speed) be lagged equally in the dynamic model for a given age sub group, as shown in Equation 7. The 

rationale for this constraint is the expectation that a driver adjusts their driving based on information 

gathered simultaneously at some point in the immediate past. Therefore, finding differences in the lags 

between the dynamic submodels by age would be an indicator of differences in driver performance by 

age. Furthermore, researchers hypothesize that 𝜔𝑎𝑔 = 𝐸[𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑎𝑔]. In other words, the lag in 

gap and relative speed should be an estimator of the average reaction time for a given age group. 
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Researchers fitted a preliminary model and performed stepwise model selection. After testing the 

performance of various ARMA configurations, researchers determined that an ARMA(p=3, q=1) was 

most parsimonious and stable in accounting for autocorrelation present in the unadjusted time series. 

Initially, researchers fitted models specifying geometric and contextual variables in the fixed effects. The 

coefficients associated with these variables were yielding small and mildly significant shifts on the 

baseline acceleration. Levels of distraction among participants were also included in the dynamic model 

with similar results. For the sake of interpretability, researchers explored specifying these variables as 

shifts to the dynamic model components, which resulted in significant improvements in model 

information and reduction of unexplained variability. 

To account for the variability associated with the age classes, and while trying to keep the model from 

degenerating into unstable estimates, researchers tried various thresholds to break the age classes for 

the dynamic submodels. Various competing models showed promise when having three or four age 

classes. However, a specification of three age classes was selected to continue exploring the impact of 

other variables in the dynamic submodels. Informed in the literature review findings, and degree of 

dissimilarity between the dynamic models, researchers attempted quantifying differences of age 

between young, young adults, middle-aged, and older drivers. In the final models, researchers used the 

thresholds for the age classes shown in Table 13. 

Researchers calculated the best SOC estimate available for each subevent using the models in Table 10 

or Table 12, depending on the available predictors per subevent. Researchers initially attempted using 

SOC estimates directly in the modeling as a fixed effect, but results were not statistically significant. 

However, when including the SOC in the dynamic model as part of a differential SOC, results were 

statistically significant, reduced unexplained variability, and significantly higher quality of information 

from the model. 

Table 13. Age Classes Used in Final Dynamic Model. 

Age Class Age Range 

AC 1 17 to 19 years of age 

AC 2 20 to 39 years of age 

AC 3 40 to 69 years of age 

AC 4 Older than 69 years of age 

 

When fitting the initial models, researchers first specified dynamic submodels that accounted 

independently for relative speed and gap and noted that contextual variables entered the fixed effects 

that shifted the baseline acceleration accordingly (i.e., by LOS, number of lanes). However, 

interpretation of the impact of a context as a constant shift in the acceleration is challenging. When 

including SOC differential terms, all contextual variables dropped from the model and the fit of the 

models improved significantly. 

In general, the amount of variability from the random effects structure remained very small through the 

modeling process. Researchers considers this an important and positive feature of the models, since it 

means that the fixed effects and the dynamic submodels explain the acceleration variability very well. 
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Results 

After several rounds of the model selection procedure described above, researchers arrived at the final 

model shown in Table 14. 

Differences in Reaction Time 

As it can be seen in Table 14, the vector of Lag parameters (i.e., 𝜔𝑛) clearly indicate declining 

performance for older drivers compared to younger drivers. The average perception/reaction time of 

drivers ages 16 to 20 is estimated to be 1.1 s. Very similarly, drivers ages 21 to 40 are estimated to have 

a delay in reaction to 1.2 s. Notably, drivers ages 41 to 70 are estimated to experience an additional 0.3 s 

in reaction time (i.e., average reaction time estimated to be 1.5 s). Finally, an average reaction time of 

2.2 s is estimated for drivers 70 years of age or older. 

Amount of Unexplained Variability 

An important characteristic in the modeling results is the virtually inexistence of variability within the 

grouping structure. Despite the data representing 221 car-following subevents in 183 events among 145 

drivers, the level of these nested groups that accounted for the most variability was that among events 

given an adjustment per participant has been applied (i.e., variance of 3.10×10-06 (mph/s)2 or standard 

deviation of 7.87×10-04 mph/s).  
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Table 14. Final Dynamic Model for Car-Following Acceleration (n=29,178). 

Omega parameters  
(i.e., Reaction Time Estimates)  

Ages 16–19 Ages 20–39 Ages 
40–69 

Ages 70 and older  

1.1 s 1.2 s 1.5 s 2.2 s 
  

 
Estimate Std. Error DF t-value p-value Significance 

Baseline Acceleration 0.040 mph/s 0.030 mph/s 21727 −1.342852 0.1793 
 

Ages 16–19 (n=1,335) 

Relative Speed +1.965 Hz 0.729 Hz 21727 2.695056 0.007 ** 

Relative Speed:ln(norm.gap) −0.440 Hz 0.187 Hz 21727 −2.360499 0.0183 * 

SOC differential +0.068 Hz 0.039 Hz 21727 −1.753747 0.0795 # 

Ages 20–39 (n=15,847) 

Relative Speed +0.597 Hz 0.084 Hz 21727 7.072873 <0.0001 *** 

Relative Speed:ln(norm.gap) −0.119 Hz 0.023 Hz 21727 −5.177161 <0.0001 *** 

SOC differential −0.032 Hz 0.010 Hz 21727 3.384197 0.0007 *** 

Ages 41–70 (n=10,029) 

Relative Speed +1.416 Hz 0.130 Hz 21727 10.906901 <0.0001 *** 

Relative Speed:ln(norm.gap) −0.312 Hz 0.033 Hz 21727 −9.421193 <0.0001 *** 

SOC differential −0.019 Hz 0.009 Hz 21727 2.118484 0.0341 * 

Ages 70 and older (n=1,956) 

Relative Speed +0.675 Hz 0.277 Hz 21727 2.433668 0.015 * 

Relative Speed:ln(norm.gap) −0.130 Hz 0.066 Hz 21727 −1.971608 0.0487 * 

SOC differential −0.013 Hz 0.024 Hz 21727 0.532469 0.5944  

Error Structure 

ARMA Parameters 
  

Notes: 
Baseline following gap for the model is 
normalized at 3.28 ft (i.e., 1 m) 
Significance levels are as follows: 
 # = Significant at the 0.10 level 
 * = Significant at the 0.05 level 
 ** = Significant at the 0.01 level 
 *** = Significant at the 0.001 level  

Delta 1 +0.4757502 

Delta 2 +0.3015964 

Delta 3 +0.1864466 

Theta 1 −0.8370979 

phi 0 1.476 mph/s 

Grouping Structure (within group variance) 

Participants (n=145)) 2.02E-10 (mph/s)2 
 

Events given a Participant 
(n=183) 3.10E-06 (mph/s)2 

Subevents given an Event and 
a Participant (n=221) 5.72E-09 (mph/s)2 

 

The implication is that the dynamic model can explain almost all acceleration variability in the data set 

except for a residual variability of ±1.476 mph/s as indicated by the phi0 parameter in the error structure. 
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Relative Differences in Dynamic Model Coefficients 

A preliminary examination of the results shows that young drivers are salient. First, results indicate that 

younger drivers have increased sensitivity of their acceleration behavior to both the relative speed of 

the lead vehicle and the distance gap between them and the lead vehicle (per relative differences in the 

first two coefficient estimates among age-group submodels). 

Another interesting characteristic of younger drivers becomes evident when noting that coefficients in 

the dynamic submodels are generally consistent across age groups except for the coefficient from the 

SOC differential for drivers 16 to 20 years of age. Even though other age groups were found to reduce 

their acceleration proportionally to their SOC differential, younger drivers were found to do the 

opposite. 

Relative Speed, Car-Following Gap, and Acceleration 

This research found that drivers of ages between 16 and 20 years accelerate on average at a rate of 

1.9 mph/s for each 1 mph in lead vehicle relative speed when the car-following gap is the reference 

3.28 ft. This rate of acceleration decreases with increasing gap. This effect is estimated at an average 

decrease of 0.136 mph/s per 1 mph in relative speed for each 2 fold increase in car-following gap (0.136 

mph/s =[−0.440 Hz]*[1 mph]*2), or an average decrease of 0.317 mph/s per 1 mph in relative speed for 

each 5 fold increase in car-following gap (−0.136 mph/s =[−0.440 Hz]*[1 mph]*5). 

In contrast, drivers with ages between 21 and 40 years accelerate on average at a slower rate 

0.60 mph/s for each 1 mph in lead vehicle relative speed when car-following gap is the reference 

3.28 ft). Like all other age groups, this rate of acceleration decreases with increasing gap. For this age 

group, the average decrease in is 0.037 mph/s per 1 mph in relative speed for each 2 fold increase in 

car-following gap (−0.037 mph/s =[−0.119 Hz]*[1 mph]*2), or an average decrease of 0.085 mph/s per 

1 mph in relative speed for each 5 fold increase in car-following gap (−0.085 mph/s 

=[−0.119 Hz]*[1 mph]*5). 

Drivers with ages between 41 and 70 years on average accelerate at a slower rate (1.416 mph/s for each 

1 mph in lead vehicle relative speed when car-following gap is the reference 3.28 ft). Like all other age 

groups, this rate of acceleration decreases with increasing gap. For this age group, the average decrease 

is 0.097 mph/s per 1 mph in relative speed for each 2 fold increase in car-following gap (−0.097 mph/s 

=[−0.312 Hz]*[1 mph]*2), or an average decrease of 0.225 mph/s per 1 mph in relative speed for each 5 

fold increase in car-following gap (−0.225 mph/s =[−0.312 Hz]*[1 mph]*5). 

Finally, drivers with ages 70 years or older accelerate at a slower rate on average (0.675 mph/s for each 

1 mph in lead vehicle relative speed when car-following gap is the reference 3.28 ft). Like all other age 

groups, this rate of acceleration decreases with increasing gap. For this age group, the average decrease 

is 0.040 mph/s per 1 mph in relative speed for each 2 fold increase in car-following gap (−0.040 mph/s 

=[−0.130 Hz]*[1 mph]*2), or an average decrease of 0.080 mph/s per 1 mph in relative speed for each 5 

fold increase in car-following gap (−0.080 mph/s =[−0.130 Hz]*[1 mph]*5). 

SOC Differential and Acceleration 

In addition to the acceleration adjustments associated with gap and relative speed, the model quantified 

how drivers tend to adjust their speed toward their estimated SOC. For drivers older than 21 years of 

age, the trend for this effect was found to consistently decrease with increasing age group. The notable 
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exception to this adjustment toward the SOC was found for drivers of ages between 16 and 20 years 

who tend to adjust their speed opposite to their estimated SOC, which is counter intuitive. This 

coefficient is statistically significant at the 0.1 level, which is suggestive evidence against the hypothesis 

of no effect at all. Regardless, it is estimated that for each 1 mph in SOC differential, younger drivers 

adjust their speed by 0.068 mph/s away from the SOC (0.068 mph/s =0.068 Hz * 1 mph). 

Outside of the group of younger drivers, all other driver age groups were found to adjust their speeds 

toward the SOC in proportion to the difference between their car-following speed and their estimated 

SOC (i.e., SOC differential). This adjustment was found to decrease with increasing driver age. Drivers 

21–40 years of age adjust their speed by 0.032 mph/s toward their SOC for each mph of SOC differential 

(0.032 mph/s= 0.032 Hz * 1 mph). Similarly, drivers 41–70 years of age adjust their speed by 

0.019 mph/s toward their SOC for each mph of SOC differential (0.019 mph/s= 0.019 Hz * 1 mph). 

Finally, the model indicates that drivers older than 70 years of age would adjust their speed by 

0.013 mph/s toward their SOC for each mph of SOC differential (0.013 mph/s= 0.013 Hz * 1 mph). 

However consistent with the other age groups with adjustments toward the SOC, this estimated 

adjustment for older drivers was not found statistically significant, which suggest that older drivers seem 

to adjust their car-following speed guided by their relative speed and car-following gap only. This is 

another potential description of speed adjustment by the youngest group, where the SOC differential 

effect was found barely significant and counter intuitive. 

In order to investigate the feasibility of the hypothesis, researchers prepared plots of SOC differential vs. 

gap by age group. Figure 27 shows these plots. The color code indicates individual car-following 

subevents. 

As it can be seen in this figure, the plots for age group 2 (21–40 years of age) and group 3 (41–70 years 

of age) indicate a very clear trend to adjusting car-following speed toward the SOC at larger gaps. This is 

the same general trend in the plot for age group 4 (ages 70 years and older) but with limited number of 

car-following events. This is probably the explanation of the statistical insignificance of this effect for 

drivers 70 years of age or older. In the case of drivers between 16–20 years of age, the number of events 

and variability of SOC differential are even smaller with no clear trend in a very limited range of values, 

which probably explains the statistical insignificance of the effect for the group of youngest drivers. 

Researchers believe that the counterintuitive direction of that effect is probably spurious and that given 

more car-following events for this age group, the coefficient could move to be negative and statistically 

significant, as for the other four groups. 
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Figure 27. SOC Differential vs. Car-Following Gap by Age Group. 
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Finally, researchers prepared some plots to demonstrate the fit of the model in Table 14 to the data.  

 

 
 

 

 
 

 

 
 

 

  
 

Figure 28. Car-Following Acceleration and Dynamic Model. 
 

Figure 28 shows some sample car-following events. Although the dynamic model may deviate from the 

actual acceleration signal for short periods, it follows the raw data generally well. Although deviations 

are minimal, some are telling of remaining heterogeneity within the age groups. For example, the lag 

between the dynamic model and the actual acceleration observed for event 152239107 in the lower 
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right quadrant of the figure clearly indicates that this elder driver (age between 80 and 84) has a slightly 

faster reaction time than estimated for his age group. 

Discussion of Results 

This study produced a credible dynamic model for car-following accelerations by age groups. The results 

indicate that younger drivers tend to adjust their speeds more actively in response to their relative 

speed to the lead vehicle and car-following gap. Their speed adjustment seems to be independent of the 

SOC differential, as opposed to other age groups that seem to account for this differential when 

applying accelerations to their driving. 

In general, a decaying performance with increasing age was found in the dynamic model: estimated 

reaction times decayed from 1.1 s down to 2.2 s as the age of the drivers increased from 16 to 19 year-

olds to 70 years and older. 

Interestingly, the amount of speed adjustment per unit of SOC speed differential decayed with age 

group too (except for the younger age group, in which case, it is likely that limited data explain a 

counterintuitive result in this regard). This seems to indicate that drivers are attentive to the dynamic 

conditions when adjusting their speed regardless of their age but their pre-conceived expectation what 

the free flow speed should be (i.e., SOC in these analyses) becomes less relevant as they age. 
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CHAPTER 7: STUDY 2 RAMP SPEED ANALYSIS 

In this present study, researchers defined three types of speeding (State I, State II, and State III). Under 

this scheme, drivers adapt one of the three types of driving state during each trip including both on-

ramp (SF) and off-ramp (FS) trips. Naturally, a driver’s choice of the speeding state is determined by 

multiple factors such as the ramp design, direction of travel, driver characteristics, time and day of trip, 

and other trip details including speed variance, speed mean, and number of trips per driver at each 

study location. Researchers conducted a time-series-classification analysis and then compared how 

external and personal factors seem to relate to speeding. 

Several methods exist for conducting the time series feature extraction and classification analysis. These 

include wavelet transformation, Fourier transformation K-nearest neighbor, piecewise linear 

approximation, support vector machines, artificial NN, etc. [98, 99]. In this study, researchers applied 

wavelet transformation, DTW, and NN to investigate speeding behavior on freeway ramps. 

As the first step, researchers applied a wavelet transformation to reduce the time series data dimension 

and obtain a relatively balanced times series data. Using a DTW algorithm, researchers then clustered 

the on-ramp and off-ramp speed traversals into three states of driving and then analyzed that result 

using NN architecture to uncover variables associated with the three driving clusters.  

Time Series Reduction and Matching 

Researchers applied the DWT method recursively to reduce the dimension of the speed series and 

create a relatively balanced set of traversal profiles. Each series was saved together with all levels of 

wavelet decompositions. After reviewing the resulting reduced sequences of the trip time series, 

researchers selected the reduced series of the lengths ranging from 20 < 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 ≤ 41. Figure 29 

depicts an example of the SF and FS trips completed by two drivers (D-171263 and D-639928).  

All four trips (2 SF and 2 FS) were completed on Ramp #3. After applying the recursive wavelet 

transformation in two iterations, the FS speed series of the two drivers have been reduced from 126 and 

167 seconds to 31 and 41 seconds, respectively. The SF trips, after two iterations, have been reduced 

from 109 and 113 seconds to 27 and 28 seconds, respectively.  

The transformed values represent the trip speeds after they have been transformed twice. For example, 

if driver D-171263 has the following speeds at the initial four seconds of the SF trip: 𝑆0
𝑡,𝑡=1,2,3,4  =

 (30.5, 30.02, 31.31, 33.7) where the superscript 0 indicates the initial level (Figure 29, upper-left 

graph), this time series will be reduced to a sequence of 3 values after the 1st level wavelet 

transformation : 𝑆1
𝑡,𝑡=1,2,3,  =  (30.26√2, 30.66√2, 32.52√2 ) = (42.79,43.36,45.99) where 30.26 =

 
30.5+30.02

2
 and so on.  
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Figure 29. Matching Two Traversals: Original vs. DWT – Transformed Series. 

 

The rationale of applying the coefficient √2 is to reduce energy loss [100]. An additional iteration yields 

the second level wavelet transformation: 𝑆2
𝑡,𝑡=1,2  = (43.08√2, 44.68√2) = (60.92, 63.19) 

where 43.08 =  
42.79+43.36

2
, and so on (Figure 29). As can be observed, no information is lost, and the 

shape of the series is preserved.  

Speed Profile Clusters 

Researchers ran a cluster analysis on the reduced speed profiles using the PAM algorithm: State I, 

State II, and State III. The clustering was conducted using the R open software package [101]. As shown 

in Table 15, 242 FS trips and 129 SF trips were assigned to State I, 19 FS trips and 45 SF trips were 

assigned to State II, and 131 FS trips and 82 SF trips were assigned to State III.  

Figure 30 shows the three states of driving recognized by the cluster analysis. The values shown on the 

y-axis do not represent the actual speeds but rather the transformed speeds. Also, the clusters show the 

individual trip series, meaning that the same driver could be represented in each of the three clusters at 

different trips. However, over repeated periods, the true natural inclination of the driver will tend to 

place him or her on one state or another.  
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Table 15. Summary of Speed Profile Clusters.  

Clusters Freeway to Street Street to Freeway 

# of trips % of total # of trips % of total 

State I 242 62% 129 50% 

State II 19 5% 45 18% 

State III 131 33% 82 32% 

Total 392 100% 256 100% 

 

At first inspection, Figure 30 shows high volatility on speed series from State I (purple colored). Some of 

those values often reach zero (coming to a complete stop). Although volatility is still present among 

speed profiles from State II (green and yellow colored), speeds in this group rarely reach a value of zero. 

Finally, speed from State III (green and turquoise colored) clearly exhibit smoother transitions from 

freeway to street or vice versa. 

Figure 30. Speed Profile Clusters. 
 

Observing the volatility of each cluster, one explanation might be that at State I drivers are less cautious 

because there are abrupt changes and sudden stops in the speed profiles. However, their driving 

behavior could potentially be attributed to congestion too (i.e., the vehicles might stop due to lead 

vehicles stopping). Likewise, States II and III could indicate either more cautious drivers or less 

congested conditions. For the following analysis, researchers review and interpret the results under the 

hypothesis that an increasing state level indicates a more cautious behavior by the drivers. Note that 

cautious driving refers in this case to the smoothness of the speed profile and it should not be 

interpreted as safe driving or risky driving necessarily.  
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Results of Network Analysis  

Researchers used 47 input variables to assess their association with the three states of speed on the 

ramps using the NN architecture. Ramp characteristics, driver characteristics, and trip characteristics are 

the broad categories that these variables can be grouped into. To conduct the NN analysis, the data 

were sampled into training and testing data sets. The NN is trained using 70 percent of observations 

connected through 15 hidden neurons. The testing data (remaining 30 percent of observations) were 

then predicted using the trained algorithm. The mean squared errors showing the difference between 

the predicted and observed data were estimated to be 2.5 percent, 2.0 percent, and 3.4 percent, for the 

States I, II, and III, respectively. This observation indicates a highly accurate prediction of each output.  

Researchers used Garson’s algorithm [102] to establish relative importance of variables. This algorithm 

uses the absolute values of connection weights to determine the relative importance of inputs in the 

network. The importance of each variable is shown in Table 20, and it is defined such that the sum of all 

contributions will be equal to 100 percent. As shown, the speed variance is the most important 

predictor of the speeding state response variable with almost 7 percent contribution. Trip weekday, 

mean speed, maximum speed, trip time, and travel direction each contribute 3 percent or more to the 

entire network. In general, the importance diagram implies that the trip time, date, and the locations of 

the trips are the main contributors to the speeding behavior. Therefore, speeding behavior most likely 

reflects the traffic conditions rather that the driver characteristics. 

The connection weights can help to explore the direction and the magnitude of the input effects on the 

outputs (see Table 16). 



7
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Table 16. NN Connection Weights and Importance of Predictors of Speeding Behavior. 
Variable Name Importance 

(% 

contribution) 

Overall Connection Weights Variable Name 

 

Importance 

(% 

contribution) 

Overall Connection Weights 

State I State II State III State I State II State III 

Speed Variance 6.3% 37.04 21.83 1.95 Risks for Fun 2.0% 7.96 4.70 2.93 

Trip Week Day 
4.0% 7.15 −7.68 −14.00 

Difficulty Enjoying 

Leisure Activities 
2.0% 

18.04 −2.76 −3.79 

Mean Speed 3.9% −43.98 17.03 21.73 Sudden Lane Change 2.0% −8.70 0.76 −4.78 

Maximum Speed 3.4% 15.22 26.80 −1.95 Losses Things 2.0% 14.02 −8.08 4.92 

Trip Time 3.0% −16.26 −15.34 6.23 Feels Restless 1.9% 5.91 6.06 9.15 

Travel Direction 3.0% −11.41 −26.51 22.14 RPS 1.9% 0.49 −5.24 26.23 

Not Wearing Seatbelt 2.9% −10.77 12.78 8.22 Area Type 1.9% −3.94 −5.65 −2.37 

Trip Year 2.8% 14.48 −14.92 −10.40 Vehicle Classification 1.9% −12.25 6.91 −7.86 

Sleeper Type 2.8% 11.95 15.77 −5.43 Road Rage 1.9% −0.25 3.95 4.45 

Interchange ID 2.7% −12.12 −4.39 −3.48 Passenger Interaction 1.9% −1.88 3.17 4.97 

Ramp Design 2.5% 3.38 −7.61 0.03 Speeding < 20 mph 1.8% −9.18 −7.66 15.32 

Trip Month 2.4% −13.20 8.60 −28.88 Passing on Right 1.8% −0.10 5.43 −0.80 

Accelerates at Yellow 

Light 
2.4% 5.56 9.42 −15.27 

Driving to Reduce 

Tension 
1.7% −0.69 14.70 17.59 

Age 2.4% −1.39 −4.44 8.65 Difficulty Awaiting Turn 1.7% −0.04 11.17 −2.30 

Speeding > 20 mph 2.3% 0.82 12.75 2.88 Rolling Stop Sign 1.7% −8.33 2.50 1.90 

Driving Under 

Influence 
2.3% 4.56 5.42 −4.53 

Number of Trips per 

Driver 
1.7% 21.35 −10.84 −5.69 

Road Racing 2.2% 16.54 10.01 4.81 Speeding for Thrill 1.5% −1.12 0.20 1.74 

Depth Perception 2.2% −9.09 4.76 −1.36 In a Hurry 1.5% 3.11 4.48 −10.62 

Sleep Schedule 2.2% 14.38 19.27 11.42 Running Red Light 1.5% −14.24 8.60 4.89 

Tailgating 2.1% 0.52 11.36 −8.95 Illegal Turns 1.3% −8.82 0.80 −1.44 

Difficulty Organizing 2.1% −9.44 14.48 −4.12 Gender 1.3% 2.30 3.06 20.53 

Easily Distracted 2.1% 28.11 −15.44 −10.07 Barkley Score 1.1% 12.60 0.54 5.69 
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Figure 31 is a graphic representation of the driving states and some of the most important factors.  

 

 

Figure 31. Description of Relationships between the Driving States and Important 

Variables.  
 

The connection weights for the speed variance indicate that as drivers shift from State I to State III, the 

magnitude of this effect starts to decrease. The results in Table 16 also indicate that the two other 

speed related inputs, mean and maximum speeds, are important. In State I, the mean speed has a 

negative association. This is expected because this state represents some drivers that come to a 

complete stop. As the drivers move from State I to State III, the association of the mean speed is 

increasingly positive. This finding can be interpreted together with the inverse association of speed 

variance and the increasing index of the speeding states: the association of speed variance is smaller in 

State III compared to State II and that, in turn, is smaller compared to State I. However, the association 

of mean speed shows the opposite trend (i.e., increasing with increasing speed state index). Although 

this could imply that speed variance may indicate cautious driving behavior, in the most likely scenario 

that the driver states associate with traffic conditions, the associations of mean speed and speed 

variance would simply suggest that when the mean speed is higher, it has also a smaller variance. Again, 

this scenario is consistent with the characteristics of congested versus uncongested traffic. 

Speed Variance Weekday 

Ramp Design Age
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The second most important variable group identified in the NN analysis is the time and date of the trips. 

For State I, the effect of week day is increasing while for the States II and III the effect is decreasing. 

Note that the week day is in increasing order from Monday to Sunday. This implies that as the week 

starts to progress more drivers start driving in State I and less drivers drive in State III. If the driving 

states indeed reflect traffic conditions, this result indicates that during the weekdays from Monday thru 

Friday drivers encounter more traffic congestion as opposed to the weekends.  

Perhaps the most interesting relationship found is the association with the ramp design. The ramp 

design variable was coded from least sophisticated (or complex) to more sophisticated. An example of a 

simple ramp is that of a diamond interchange, while a complex ramp is that from a partial cloverleaf 

interchange. The importance of the influence of ramp design is moderate to high (ranked 11 out of 47 

factors in Table 16). The relationship between State III driving and ramp design is very small indicating 

that drivers are as likely to exhibit State III speeds (higher speed mean and lower variance) regardless of 

the complexity of the ramp design. In contrast, the effect is large and negative for State II, which implies 

that drivers become less likely to exhibit driving behavior in this state as the interchange becomes more 

sophisticated (after discounting the influence of traffic). Finally, the effect is the opposite for State I. A 

positive weight suggests that drivers become more likely to exhibit driving characteristics within the 

State I pattern (after discounting the influence of traffic) as the ramps become more challenging to 

navigate.  

Among the driver characteristics, the age, risk perception elements, and sleeping habits are observed to 

contribute more to the driving states. The driver age is negatively related to State I and II and positively 

related to State III. This finding implies that older drivers tend to exhibit driving patterns more like 

State III and less like the State I and State II driving after discounting other influential elements, such as 

time of day and geometric design, per the discussion above.  

The RPS is positively related to State III with a magnitude of the effect being very high. This feature 

suggests that State III associate with high RPS. For State II, the weight for RPS is negative, implying that 

this state of driving tends to have drivers with smaller RPS. An examination of the speed-related 

elements of the risk perception survey (i.e., accelerates at yellow light, speeding for thrill, or speeding 

over the speed limit) suggests that the State III driving seem to associate with drivers who perceive the 

risks related to these behaviors poorly. State II tends to have such drivers less represented.  

The Barkley’s ADHD score was not found to be significantly associated with the driving states although 

individual elements of the survey were found to be of importance (easily distracted and difficulty 

organizing). 
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CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS 

This project identified and quantified relationships between traffic OP variables (such as operating 

speeds), HF characteristics (e.g., driver demographics), and SA variables (crash or near-crash outcome) 

making use of the recently available SHRP2 databases. 

Researchers assembled two data sets from the SHRP2 products to study driver performance and 

investigate how the operational characteristics may explain SA outcomes. 

Study 1 

The first database was assembled from close to 800 events from freeway trips in non-curve, 

uncongested conditions. Besides several exploratory analyses performed initially, researchers 

performed two main analyses: 1) investigation of factors that affect driver’s SOC; and 2) driver 

performance on car-following situations. 

SOC 

For the SOC analysis, researchers developed models based on events where the drivers did not change 

their speed and they were not following another vehicle. These events were hypothesized to be 

representative of the driver’s free flow SOC. 

An examination to the potential explanatory variables available in the data, researchers recognized a 

significant limitation in the small subset for which PSL and other driver environment variables were not 

available. As a result, researchers elected to perform two sets of analyses: one with the bigger data not-

including PSL and one with the smaller data set that included that variable. 

In the analysis without PSL, estimation of SOC improved significantly when accounting explicitly for 

driver characteristics such as the number of previous traffic violations, driver age, and a set of issues 

with vision (nearsightedness, poor night vision, glaucoma, and use of reading glasses). 

For the analysis including PSL, models with PSL were in general better predictors of SOC. Although 

researchers attempted to incrementally add driver characteristics to the best-fitting model that does not 

have such variables (similar to the analysis of data without PSL), a single driver-related variable (number 

of years driving) was found to have a marginal improvement on the prediction of SOC. Researchers 

speculate that the reason for this reduced impact of HF is explained by the limited sample size with PSL 

(less than a third of the sample size for SOC without PSL) and the significant power of PSL in explaining 

SOC.  

A comparison on the precision of SOC predictions highlights the relevance of PSL in determining the 

SOC. The best model from the larger data set that included driver characteristics (but not including PSL) 

could explain all variability in SOC except for ±6.493 mph among events and ±4.969 mph residual 

variability. In contrast, the best model including PSL explained SOC variability except for ±4.503 mph 

among events and ±3.957 mph residual variability. This implies that the unexplained variability among 

events and overall residual variability were reduced by approximately 1 mph each. However, it is salient 

that the amount of variability between events remains large comparable to the residual variability in 

models with and without PSL. This suggests that event-specific factors, unaccounted for these models, 

have a large impact on the driver’s selection of free-flowing speed. 
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Overall, the factors that explain most variability in SOC were PSL, traffic density, and functional class. 

Driver characteristics such as driver age and visual acuity were found influential too, but such influence 

was quantified in a larger data set that did not have PSL, the most relevant predictor. Therefore, 

researchers could not assess the relative influence of these human-factors related variables and PSL. 

Only years of driving experience was found marginally influential on SOC in the presence of PSL as a 

predictor. 

Future Work with SOC 

Future research should assemble a larger data set with both PSL and driver features to develop a more 

comprehensive model that simultaneously account for the influence of driver context variables (such as 

PSL and road geometry) and driver characteristics on SOC. Such future work should investigate what 

other event-specific variables could contribute to reducing the large amount of unaccounted variability 

between events that was found even in the best SOC models with PSL as a predictor. 

Car-Following Behavior and Human Factors 

For the second part of this study, researchers analyzed a set of 221 car-following subevents from 145 

drivers to investigate the influence of driver characteristics in car-following performance. Researchers 

specified a relatively complex dynamic model. Initially, the model focused on following speed and 

allowed the inclusion of time-invariant covariates as fixed effects that shift the dynamic model (the 

dynamic model itself allowed for both random and fixed effects). It was determined that the speed 

could not be modeled as a stationary time series and thus the focus moved to the car-following 

acceleration. 

All time-invariant covariates considered were dropped in the acceleration model during the step-wise 

model selection, except for the role of some of them in determining the SOC, which entered the 

dynamic model in a compound variable. 

A visual examination of the relationship between the acceleration and other stochastic variables (such 

as car-following gap and car-following relative speed) suggested a lagged relationship. Meaningfully, this 

lagged relationship is expected if a causal relationship exists (i.e., a change in acceleration responds to a 

change in the other variables). Researchers hypothesized that such causal relationship exists and 

specified the dynamic model to include the lag operator to account for this feature. Furthermore, 

researchers specified four acceleration submodels, one for each of four mutually exclusive age groups, 

to quantify the differences in car-following performance that are expected by driver age. 

Researchers allowed the degree of lagging between the acceleration and the explanatory time series to 

vary during the estimation of the dynamic model coefficients, to assess differences in performance 

between driver age groups. Results showed, as expected, a set of lags that indicated a declining 

performance with increasing age. The lag in the dynamic acceleration submodel for drivers between 16 

and 19 years of age suggests that this group have an average reaction time of 1.1 s. For drivers of ages 

20–39, the reaction time estimate was nearly identical (1.2 s). Drivers of ages 40–69 were found to have 

longer average reaction times (1.5 s). Finally, the reaction time for older drivers was estimated 

significantly larger at 2.2 s, twice as long as the youngest drivers. 

Regardless of the differences found in estimated reaction times, the results from the dynamic model 

indicate notable differences in the acceleration adjustment that different age groups make in response 
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to the state of the car-following system. Following behavior was found most sensitive to the car-

following relative speed at close range for drivers 16–19 years of age. The second-most sensitive group 

in terms of sensitivity to relative speed at close range was drivers between 40 and 69 years of age. The 

remaining two groups were found to have very similar sensitivity to relative speed at close range. 

The sensitivity to SOC differential was found, as expected, to indicate an adjustment toward the SOC, 

except for drivers 16–19 years of age (statistically significant at the 0.10 level). Based on an examination 

of the raw data, researchers argue that this counterintuitive finding could be due to a spurious 

happening and that the sensitivity to SOC may be close to zero for this age group. For the other three 

age groups, the amount of SOC sensitivity, with adjustment toward the estimated SOC, was found to 

consistently decrease with increasing age. 

Future Work with Car-Following Behavior 

Future research should examine the car-following model performance against driving situations that 

were not included in the modeling effort. For this proposed evaluation, more data are needed. With 

more events (or longer driving events), future work would can validate the differences found between 

age groups and evaluating the expected distortions in car-following behavior that distracted driving 

introduces. Ultimately, a larger set of crashes or near-crashes is needed to assess the impact of car-

following behavior in the risk of crashes or near crashes. 

Study 2 

The second study concerns the SOC on freeway ramps. In this study, researchers used the SHRP2 data 

from Pennsylvania. Researchers used the trip summary, roadway, and driver characteristics to identify 

the most influential factors affecting the drivers’ speed choice on the ramps. The most influential factors 

were found to be the time and week day of trip, direction of travel, and ramp characteristics. Based on 

the influence of these factors, drivers were found to adjust their speed more uniformly. In this study, 

the impact of driver characteristics was not found to be as important, although the results of the NN 

indicate that the driver characteristics influences the SOC in a certain degree. For example, the group of 

drivers who drove more consistently (State III) was not found to perceive driving at higher speeds as 

risky behavior. State I drivers are found to be easily distracted based on their Barkley ADHD scores.  

In this study, researchers used rigorous and sophisticated statistical tools to conduct naturalistic data 

analysis. The results indicate that the SOC is not merely a momentary decision without any input but 

rather a process that is influenced by number of contextual factors. This process was found especially 

complex in the case of the car-following dynamic model. As future improvements to this work, 

researchers envision to increase the sample size of available data to validate the statistical models and 

computational tools developed in this project, as well as to investigate more nuanced relationships with 

other driver-related variables of interest, such as distraction level and types. Regardless, the results of 

this study are beneficial for traffic engineers, designers, and transportation data analysts. The 

knowledge harnessed about speed choice and car-following behavior could be used to screen for 

scenarios where the expected speeds are in disharmony with the context, and then a list of appropriate 

countermeasures to address the speed related SA issues can be developed. 
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Abstract 1 

Traditional measures of speed obtained through traffic observations are not based on detailed 2 
information about the related drivers and vehicles. Data from naturalistic studies, such as SHRP2 - NDS, 3 
can mitigate this issue by combining the key data on driver, roadway and speeding behavior. The 4 
objective of this study is to assess drivers' speeding behaviors on freeway ramps as the function of ramp 5 
design, trip summary, and driver characteristics. The data analysis provides insights into various spatial 6 
and temporal factors. To conduct the data analysis authors have implemented time series reduction, 7 
matching and clustering methods to define a new speeding behavior response variable denoted as driving 8 
States. Using the resulting response variable and the three groups of predictors, authors have conducted 9 
neural network analysis to identify the most influential predictors and their effects on the speeding 10 
behavior of drivers during on-ramp and off-ramp travels. Results of speeding behavior on freeway ramps 11 
indicate that the speed choice at these locations is indeed a complex process and is mainly influenced by 12 
the temporal and traffic conditions. Personal characteristics of drivers also were found to influence speed 13 
choice in these locations.  14 

 15 

Key words: Freeway Ramp, Naturalistic Driving, Human Factors, Traffic Conditions, Speed Choice, Time 16 

Series Clustering, Discrete Wavelet Transformation, Dynamic Time Warping, Neural Networks.  17 
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Introduction  1 

Freeway crashes frequently occur at on-ramp and off-ramp locations. These crashes account for 18% of 2 

all interstate crashes, 17% of injury crashes and 11% of fatal crashes at interchange locations (1). A 2004 3 

study by McCartt et al. found that about 50% of ramp-related crashes occurred while the vehicles were 4 

exiting the freeway, 36% occurred while the vehicles were entering the freeway, and 16% occurred at 5 

the midpoints of access roads (2). They also observed that 48% of the crashes were run-off-road 6 

crashes, and 36% of them were rear-end collision. These findings suggest that speed adjustments that 7 

occur at interchange locations, such as freeway-to-ramp transitions, may be associated with an increase 8 

in crashes. Kim et al. found that 85% of all freeway rear-end crashes occurred within 2000 feet of the 9 

on-ramp gore (3). This study found that there was a strong association between rear-end crash rates 10 

and deceleration rate. Overall, speed indicators as well as the acceleration rates have been found to be 11 

important predictors of highway safety (4, 5, 6, 7, 8). 12 

Several researchers have analyzed speeding behavior at ramps as an important roadway design factor, 13 

but few of these studies have analyzed the merging and diverging process of drivers as the result of their 14 

personal characteristics (3, 9). Speeding behavior is a complex process that can be influenced by several 15 

factors: roadway characteristics, traffic conditions, driver characteristics, vehicle dynamics, and weather. 16 

Analysis of speeding behavior on freeway ramps might become even more challenging due to the 17 

sophisticated design of these sites. The roadway characteristics, speed limits, and other drivers have 18 

been found to be among the most influential predictors attributed to speeding behavior (10, 11). 19 

Personality characteristics that have been found to be predictive of excessive speeding behavior include 20 

conscientiousness, reward sensitivity, sensation seeking tendencies, road rage, inattention, and risk 21 

perception (12, 13, 14, 15, 16).  22 

 23 

Research Objectives and Methodological Approach 24 

The goal of this paper is to evaluate the speeding behavior of drivers during the freeway merging and 25 

diverging activities. The secondary objective of this paper is to explore how well the speeding behavior 26 

reflects the driver’s personal characteristics and surrounding factors. For this purpose, the authors used 27 

trip time series data from the Naturalistic Driving Study (NDS) of the Second Strategic Highway Research 28 

Program (SHRP2).  29 

In the present study, authors hypothesize that there are three types of speeding, labelled as States 30 

(State I, State II and State III). Drivers are assumed to adapt one of the three types of driving State during 31 

each trip including both on-ramp (street to freeway - SF) and off-ramp (freeway to street - FS) trips. 32 

Driver’s choice of the speeding State depends on multiple factors such as the ramp design, direction of 33 

travel, driver characteristics, time and day of trip, and other trip details including speed variance, speed 34 

mean, and number of trips per driver at each study location. The authors used a three-step procedure to 35 

conduct time series classification and analyze the impact of external and personal factors on the 36 

speeding behavior (Figure 32). 37 

Several methods exist for conducting the time series feature extraction and classification analysis. These 38 

include wavelet transformation, Fourier transformation K-nearest neighbor, piecewise linear 39 

approximation, support vector machines, artificial neural networks and so on (17, 18, 19, 20, 21). In this 40 
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study researchers have applied wavelet transformation, dynamic time warping and neural networks to 1 

conduct the data analysis as explained below. 2 

As the first step, authors applied wavelet transformation to reduce the time series data dimension to 3 

obtain a relatively balanced times series data. Using the Dynamic Time Warping tools, authors then 4 

clustered the on-ramp and off-ramp speed traversals into three States of driving behavior. As the final 5 

step, authors conducted the joint analysis of driving States using neural networks architecture.  6 

 7 

Figure 32. Ramp speeding behavior analysis framework 8 
 9 

The rest of this paper is organized as follows. In the next section the SHRP2 dataset is described briefly. 10 

This section is followed by the description of the statistical methods and tools implemented in this 11 

study. In the third section the data analysis results are discussed. The paper ends with the conclusions, 12 

acknowledgments and references.  13 

 14 

SHRP2 Data Description 15 

The SHRP2 – NDS dataset includes data that represent more than 3,500 volunteer drivers age 16 to 98. 16 

The data collection duration extended over a four-year study period (2010-2013). The SHRP2 – NDS 17 

study includes data from various locations in six states in the United States: Indiana (IN), New York (NY), 18 

North Carolina (NC), Washington (WA), Pennsylvania (PA) and Florida (FL). NDS data is complemented 19 

by a Roadway Information Database (RID) that contains detailed information for roadways in the study 20 

regions. NDS trip data can be linked to the RID roadway data using the Link ID – a unique road segment 21 

identifier, variable. The integrated SHRP2 data can provide researchers with an abundance of 22 

information such as the driver and roadway characteristics, vehicle speed information over distance and 23 

time, and other congestion-related factors including the time and day of participant trips.  24 

 25 

NDS Traversals  26 

In this study, the authors used NDS trip information (or traversals) collected from ramps at four 27 

interchanges on two freeway sections in Altoona, PA. For the analysis of speeding behavior authors 28 

considered the state where the enforcement of the speed traffic law was not very strict to diminish the 29 

impact of this factor on drivers’ speeding behavior (22). Data were obtained from four interchanges on 30 

two freeways (Figure 33):  31 

 Urban freeway: William Penn, Blair County. 32 

Time Series 
Reduction

Time Series 
Clustering

On-Ramp 
Trips

Off- Ramp 
Trips

Neural 
Networks

State I

State II

State III
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 Rural freeway: Bud Shuster Freeway, Blair County. 1 

The length of each ramp located on these freeway interchanges is approximately 2 miles long which 2 

include locations on the intersecting freeway and street, and the ramp connecting the two. To fulfill the 3 

objectives of this study, the authors identified trips where each driver had traversed the same ramp in 4 

both directions of travel. These trips are identified as: 5 

 Merging: Street to Freeway (SF) 6 
 Diverging: Freeway to Street (FS) 7 

 8 

 9 

 10 
Figure 33. Ramp trajectories. 11 

 12 

Bud Shuster HW and 17th St (Urban)

• Diamond Interchange

Bud Shuster HW and PA-865 
(Urban)

• Trumpet Interchange

William Penn HW and Tunnehill
(Rural)

• Partial Cloverleaf Interchange

William Penn HW and West 2nd St 
(Rural)

• Trumpet Interchange
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For the analysis of speeding behavior, authors used speeds recorded by the Global Position 1 
System (GPS) transponder located in each study vehicle. The NDS trip time series provides both GPS 2 
speed and the speed recorded by the vehicle’s own network. However, since the speeds recorded by the 3 
GPS also have the matching latitude and longitude information for every second, the authors elected to 4 
use this data source as the primary indicator of speeding behavior.  5 

To obtain a consistent study sample, the authors only selected trip data that spanned the entire 6 
duration of the target freeway ramps with travel times of 60-70 seconds or greater. This produced 859 7 
trips taken by 32 participants. In many cases, drivers travelled the study route multiple times over the 8 
study period. The number of trips per driver for most of the drivers ranged from 2 to 70 trips, with the 9 
average of 30 trips per driver. Two of the study participants regularly used one of these routes; they had 10 
accumulated 341 trips (117 and 224 trips) which accounted for almost 40% of all trips. Such an 11 
overrepresentation in the trip numbers can present a bias in the results where the speeding will be 12 
analyzed as the function of driver characteristics among other explanatory factors. Therefore, due to the 13 
potential for undue and biased influence in the results from these two drivers if all their trips were used, 14 
the authors decided to reduce the number of trips by random sampling. For this purpose, authors assigned 15 
0 and 1 to each trip randomly and selected the trips that were assigned value 1. As the result 53 and 77 16 
trips were left. The final study data set used in this study included 256 SF and 392 FS trips.  17 

Next, the authors assembled a trip summary for each trip. The associated data included the year, 18 
month, weekday, time bin as well as each trip’s maximum speed, mean speed, and speed variance. There 19 
is no exact hour for the trips, instead each trip was assigned a three hours long time bins.  20 

NDS Driver Characteristics  21 

To explore how the individual characteristics of a driver may influence their speeding behavior, the 22 

authors used the following driver information obtained through interviews and psychological testing of 23 

the SHRP2-NDS participants:  24 

 Driver demographics (age and gender). 25 
 Barkley’s Attention Deficit Hyperactivity Disorder (ADHD) screening. 26 
 Risk perception score (RPS).  27 
 Sleeping habits.  28 
 Depth Perception. 29 

Barkley’s ADHD Screening Test 30 

Individuals with attention deficit disorder (ADD) and ADHD are prone to frequent inattention 31 
and distraction while performing tasks. In addition to inattention being a factor that is potentially 32 
associated with speeding (14), a study by Quinn et al. noted that individuals with ADD and ADHD have a 33 

higher likelihood to be ticketed for speeding (23). This observation leads to the potential hypothesis that 34 

those who score high on Barkley’s ADHD screening test may have higher speeding incidences than those 35 
who score low on the test. The six items included in the Barkley’s ADHD screening are: 36 

1. Easily distracted 37 
2. Difficulty organizing 38 
3. Loses objects 39 
4. Quick screen- difficulty waiting turn 40 
5. Feels restless 41 
6. Difficulty enjoying leisure activities. 42 

 43 
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Each of these six items is scored by the participant by using one of the following three answers: Never or 1 
Rarely (1), Sometimes (2), and Often (3). The Barkley’s ADHD score was then calculated using the 2 

answers provided to these items (24). 3 

Risk Perception Score (RPS) 4 

Risk perception is well-documented in the literature to have a strong impact on speeding behavior 5 

(25). Those with low risk perception tend to have a high perception of their individual driver control. As 6 

part of this characteristic, these drivers tend to dismiss risks, exude a high self-confidence (especially 7 

about their driving ability), and demonstrate unrealistic optimism (26). It is hypothesized that those with 8 

low risk perception (which equates to a low RPS score) will have higher number of speeding incidents 9 
than those who have a high RPS score. The list of the questions used for the RPS is shown in Table 18. 10 
Respondents answered to the questionnaire by assigning No Greater Risk (1), Moderately Greater Risk 11 
(2) and Greater risk (3) to each question.  12 

 13 

Table 17. Elements of Risk Perception questionnaire. 14 

 Running red light 

 Risks for fun 

 Sudden lane changes 

 Running stop sign 

 Speeding for thrill 

 Tailgating 

 Illegal turn 

 In a hurry 

 Risk of passing on right 

 Yellow light acceleration 

 Driving after taking drug or alcohol 

 Road rage 

 Driving to reduce tension 

 Passenger interaction 

 Racing 

 Speeding <20> mph over limit. 

 Not wearing safety belt 

 Risk perception score 

2- No Greater risk; 4- Moderately Greater Risk; 7- Greater Risk. 

 15 

Sleeping Habits 16 

Previous research has found personality differences between long and short sleepers. Specifically, 17 
short sleepers were found to be efficient persons that handle stress by keeping busy and by denial. Long 18 
sleepers, on the other hand, had higher instances of depression and anxiety and scored higher on most 19 

pathology tests (27). This portion of the evaluation is an exploratory analysis on both sleep schedule (i.e., 20 

whether the participant keeps a regular sleep schedule, Yes or No) and sleeper type (i.e., light, normal, or 21 
heavy) to determine if these factors encompass a variety of traits related to speeding propensity. 22 

Depth Perception 23 

Depth perception is the ability to visually perceive the world in three-dimensional space and is 24 
necessary to accurately determine the distance to an object. Depth perception is a “personal” 25 
characteristic that directly affects an individual’s visual perception, and therefore may be connected to 26 
speeding behavior (or lack thereof).  27 

Participants were shown a picture of four rings (top, bottom, left and right) and were asked if the 28 
bottom ring seems to be floating towards them. If the participant answers yes, they moved to a second 29 
picture and were asked which ring seems to be floating toward them. Drivers who cannot see the ring 30 
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floating towards them received no score. For all others, they were scored in seconds of arc, where the 1 
smaller the seconds of arc, the better depth perception the participant has.  2 

 3 

The list of the predictors used in the study is shown in Table 18. 4 

Table 18. Predictors used to analyze driving behaviors. 5 
 6 

Predictor 

Group 

Variable Name Variable 

Type 

Descriptive Statistics 

Min Max Mean St. D. 

Ramp 

Characteristics 

Area Type Categorical 1 = Rural, 2 = Urban 

Travel Direction Categorical 1 = Freeway to Street, 2 = Street to 

Freeway 

Interchange ID Categorical 1 = Bud Shuster HW and 17th St, 2 = Bud 

Shuster HW and PA-865, 3 = Will Penn 

HW and Tunnehill St., 4 = Will Penn HW 

and West 2nd St  

Ramp Design Categorical 1 = Diamond; 2 = Trumpet; 3 = Partial 

Cloverleaf 

Trip Summary 

  

 

Trip Year Numerical 1 = 2011; 2 = 2012; 3 = 2013 

Trip Month Categorical 1 = January 2 = February, …, 12 = 

December 

Trip Week Day Categorical 1 = Monday, …, 7 = Sunday 

Trip Time  Categorical Three hours bin (8 bins) 

Maximum Speed Numerical 41 80 61.9 5.8 

Mean Speed Numerical 5.3 60.4 41.3 6.7 

Speed Variance Numerical 3.5 28.1 12.8 5.1 

Vehicle 

Classification 

Categorical 1 = Car, 2 = SUV, 3 = Cross-over, 4 = 

Minivan 

Driver 

Characteristics 

Age Categorical 1 = 16-19; 2 = 20-24, 3 = 25-29, 4 = 30-34, 

5 = 35-39, 6 = 45-49, 7 = 50-54, 8 = 55-59, 

9 = 60-64, 10 = 65-69, 11 = 70-74 

  Gender Categorical 1 = Female, 2 = Male 

  Barkley Score Numerical 1 6 2.02 1.06 
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  Risk Perception 

Score 

Numerical 1 126 74.05 38.6 

  Sleeper Type Categorical 1 = Light; 2= Normal; 3 = Heavy 

  Has a Sleep 

Schedule 

Categorical 0 = No; 1 = Yes 

  Depth Perception Categorical 1 = B/400, 2 = L/200, 3 = B/100, 4 = T/70, 

5 = T/50, 6 = L/40, 7 = R/30, 8 = L/25, 9, = 

R/20 

 1 

Statistical Methodology 2 

As it was indicated earlier, the spatial distance completed by all traversals is similar between study sites 3 

(approximately two miles) since all the ramps included in the study had approximately the same length. 4 

However, because of the speed differentials, the trip durations vary hence resulting in unbalanced time 5 

series data. Therefore, as an initial step for the time series dimension reduction evaluation, the authors 6 

used the Discrete Wavelet Transformation (DWT) method to obtain a relatively balanced time series.  7 

The second step of the statistical analysis involves the matching and clustering of the reduced 8 
traversal sequences. Time series clustering can be conducted in several ways. In this study, the authors 9 
used the Dynamic Time Warping (DTW) algorithm to cluster the reduced time series data into three 10 
driving state clusters: State I, State II, and State III. Given that the on-ramp and off-ramp speeds have two 11 
different shapes (e.g. when travelling from freeway to street) the time series clustering might become 12 
challenging. Therefore, authors have clustered two sets of speed time series data based on the direction of 13 
the trips: freeway to street trips (FS) and street to freeway trips (SF).  14 

The clusters or driving states are assumed to be the three levels of the speeding State response 15 
variable. After identifying the response variables, the authors then used Neural Networks (NN) to 16 
evaluate the impact of the following group of factors on the speeding behavior: 17 

 Ramp Characteristics. 18 
 Driver Characteristic. 19 
 Trip Summary. 20 

 21 

Although the clustering is conducted for the on-ramp and off-ramp time series separately, authors have 22 

conducted the joint NN analysis using the results from both sets of clusters and have used the travel 23 

direction as one of the predictors.  24 

Discrete Wavelet Transformation 25 

As previously indicated, due to the speed differentials, the length of the series (i.e. number of seconds) 26 

included in this study ranged between 70 to 850 seconds. Such a significant inequality among the series 27 

lengths could cause a concern. This problem can be dealt with by reducing the time series dimension 28 

(length-wise) using the algorithms such as Discrete Wavelet and Discrete Fourier transformation.  29 
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In this study, the authors used the DWT to reduce the dimension of relatively longer series. 1 
Namely, the Haar wavelet is used to conduct the dimension reduction. Haar wavelet allows the time series 2 
of length 𝑇 to be represented in terms of its orthonormal basis by calculating a set of averages and 3 

coefficients (usually √2 to ensure energy conservation) (28, 29). After the first iteration, the time series 4 

length reduces to 𝑇 2⁄ . The resulting time series is referred as the first level of wavelet transformation. 5 

The DWT method can be applied recursively until a single coefficient and average is obtained.  6 

Dynamic Time Warping 7 

To match and cluster the reduced trip time series of varying lengths, the authors used the DTW 8 

algorithm. DTW is essentially a point-to-point matching method under some boundary and temporal 9 

consistency constraints. DTW was originally developed for speech recognition (30). The algorithm aims 10 

to match two time series vectors by warping the time axis iteratively until the optimal alignment is 11 

achieved. Optimal alignment in this case is measured by the time warping distance (31).  12 

DTW clustering can be conducted based on the distance or shape of the series. In this study the 13 
authors have implemented the Partitioning Around the Medoids (PAM) algorithm. The PAM algorithm is 14 
based on the principle of finding the sequence that is in the cluster center. The members of the given 15 
cluster are then selected based on the cutoff distance from the medoids. This method essentially optimizes 16 
the matching by using both shape and distance measures.  17 

Neural Networks 18 

To describe the relationships between the predictors (inputs) and the speeding state (output), the authors 19 
used the multi-layer perception (MLP) NN architecture trained by a backpropagation algorithm. NN 20 
methods are known for their ability to deal with a relatively large number of predictors. The NN 21 
framework or architecture has three elements: input, hidden layer and output (Figure 34). Input and output 22 
refer to the predictors and response variable respectively. Hidden layers are the collection of neurons 23 
organized and connected to each other using the arrows that are referred to as the weights. Weights can 24 

also be understood as the parameter estimates although they should not be interpreted as such (32).  25 

 
   

Inputs Hidden Layers Outputs 

 

Figure 34. Neural Networks framework.  
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 1 

In the NN architecture, the relative contribution of the inputs to the output depends on the magnitude 2 

and the direction of the connection weights (33). Connection weights are computed using the weights 3 

of individual inputs in each hidden layer. Greater connection weight indicates the higher intensity of the 4 

association. Negative connection weights represent an inhibitory (reducing) effect while the positive 5 

connection weight represent an excitatory (increasing) effect of the neurons on the output. The NN 6 

architecture is depicted in Figure 4.  7 

 8 

Result and Discussion 9 

Time Series Reduction and Matching 10 

To reduce the dimension of the speed series and create a relatively balanced set of traversals, the authors 11 
recursively applied the DWT method. Each series was saved together with all levels of wavelet 12 
decompositions. After reviewing the resulting reduced sequences of the trip time series, the authors 13 

selected the reduced series of the lengths ranging from 20 < 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 ≤ 41. An example of the SF and 14 
FS trips completed by two drivers (D-171263 and D-639928) is depicted in Figure 4.  15 

  

  
Figure 35. Matching two traversals: Original vs DW – Transformed series. 

All four trips (2 SF and 2 FS) were completed on Ramp #3. After applying the recursive wavelet 16 
transformation in two iterations, the FS speed series of the two drivers have been reduced from 126 and 17 
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167 seconds to 31 and 41 seconds respectively. The SF trips, after two iterations, have been reduced from 1 
109 and 113 seconds to 27 and 28 seconds respectively. The transformed values represent the trip speeds 2 
after they have been transformed twice. For example, if driver D-171263 has the following speeds at the 3 

initial four seconds of the SF trip: 𝑆0
𝑡,𝑡=1,2,3,4  =  (30.5, 30.02, 31.31, 33.7) where the superscript 0 4 

indicates the initial level (Figure 35, upper-left graph), this time series will be reduced to a sequence of 3 5 

values after the 1st level wavelet transformation : 𝑆1
𝑡,𝑡=1,2,3,  =  (30.26√2, 30.66√2, 32.52√2 ) =6 

(42.79,43.36,45.99) where 30.26 =  
30.5+30.02

2
 and so on. The rationale of applying the coefficient √2 is 7 

to “conserve the energy” (see [31] for more information on this subject). After the next iteration, the 8 

second level wavelet transformation for this sequence will be equal to: 𝑆2
𝑡,𝑡=1,2  =9 

(43.08√2, 44.68√2) = (60.92, 63.19) where 43.08 =  
42.79+43.36

2
, and so on (Figure 35 lower left 10 

graph). As can be observed, no information is lost, and the shape of the series are not altered after the 11 
wavelet transformations.  12 

Speed Profile Clusters 13 

The authors clustered the reduced speed profiles into three states using the PAM algorithm: State I, State 14 

II and State III. The clustering was conducted using the R-CRAN open software (34). As shown in Table 15 

19, 242 FS trips and 129 SF trips were assigned to State I, 19 FS trips and 45 SF trips were assigned to 16 
State II and 131 FS trips and 82 SF trips were assigned to State III.  17 

 18 

Table 19. Summary of speed profile clusters.  19 

Clusters Freeway to Street Street to Freeway 

# of series % of total # of series % of total 

State I 242 62% 129 50% 

State II 19 5% 45 18% 

State III 131 33% 82 32% 

Total 392 100% 256 100% 

 20 

The speed profile clusters can be visualized in Figure 36.  21 

 22 
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 1 

Since the time series data were reduced using the wavelets, the values shown on the y- axis do not 2 
represent the actual speeds but rather the transformed ones. Also, it should be noted that the clusters show 3 
the individual trip series, meaning that the same driver could belong to all three clusters. However, it is 4 
assumed that over a longer period, the true behavior of the driver will surface as additional trips occur. 5 
This is also one of the reasons why all the trips need to be included in the clustering analysis. On the 6 
contrary, the analysis might not be able to capture the true nature of the driver’s behavior, as there is no 7 
way to assure convergence to the “long term behavior”. 8 

At first inspection, it can be observed that the speed series belonging to State I (purple colored) 9 
are highly volatile, some of the values reaching to zero (coming to a complete stop). Speed profiles 10 
assigned to State II (green and yellow colored) are still relatively volatile; however, the speeds rarely 11 
reach a value of zero. The speed series assigned to State III (green and turquoise colored), on the other 12 
hand, exhibit smoother speed transitions when travelling from one location to another. 13 

Observing the overall volatility of the series belonging to each cluster, one explanation might be 14 
that at State I the drivers are less cautious because there are abrupt changes and sudden stops in the speed 15 
profiles. However, their driving behavior can also be attributed to congestion, i.e. the vehicles might be 16 
stopping due to congestion. It seems like at States II and III the drivers could be more cautious (or under 17 
less congested conditions), although at State II the drivers continue making abrupt speed changes. At 18 
State III the drivers seem very cautious because the transition from freeway to street and from street to 19 
freeway appears to be quite smooth. Yet, this smooth transition could also be indicating minimal or 20 
inexistent congestion or opposing traffic. For the following analysis, the authors review and interpret the 21 
results under the hypothesis that an increasing State level indicates a more cautious behavior by the 22 
drivers. Note that cautious driving only refers to the speeding pattern of the drivers and should not be 23 
interpreted as safe or risky driving.  24 

Results of Network Analysis  25 

The authors used 47 inputs to assess the three States of speeding behavior on the ramps using the NN 26 
architecture. These inputs belong to the following categories: ramp characteristics, driver characteristics, 27 
and trip characteristics. To conduct the NN analysis, the data was sampled into training and testing 28 
datasets. The NN is trained using 70% of observations connected through 15 hidden neurons. The testing 29 
data (remaining 30% of observations) was then predicted using the trained algorithm. The mean squared 30 
errors showing the difference between the predicted and observed data was estimated to be 2.5%, 2.0%, 31 
and 3.4%, for the States I, II and III respectively. This observation indicates a highly accurate prediction 32 
of each output.  33 

F
re

ew
ay

 t
o

 S
tr

ee
t 

State III State I State II 

 
Figure 36. Speed profile clusters. 
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The relative importance of variables was found by using the Garson’s algorithm (35). Garson’s 1 

algorithm uses the absolute values of connection weights to determine the relative importance of inputs in 2 
the network. This relative importance was calculated for the entire network and not for each State 3 
individually. It shows the individual contributions of each input to the network. The sum of all 4 
contributions will be equal to 100%. The importance of each variable is shown in Table 20. As shown, the 5 
speed variance is the most important predictor of the speeding State response variable with almost 7% 6 
contribution. Trip weekday, mean speed, maximum speed, trip time, and travel direction each contribute 7 
3% or more to the entire network. In general, the importance diagram implies that the trip time and date 8 
and the locations of the trips are the main contributors to the speeding behavior. Therefore, it can be 9 
concluded that the speeding behavior is mainly influenced by the traffic conditions rather that the driver 10 
characteristics.  11 
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Table 20. NN Connection weights and importance of predictors of speeding behavior.  1 

Variable Name Importance 

(% 
contribution) 

Overall Connection Weights Variable Name 

 

Importance 
(% 

contribution) 

Overall Connection Weights 

State I State II State III State I State II State III 

Speed Variance 6.3% 37.04 21.83 1.95 Risks for Fun 2.0% 7.96 4.70 2.93 

Trip Week Day 
4.0% 7.15 -7.68 -14.00 

Difficulty Enjoying Leisure 
Activities 

2.0% 
18.04 -2.76 -3.79 

Mean Speed 3.9% -43.98 17.03 21.73 Sudden Lane Change 2.0% -8.70 0.76 -4.78 

Maximum Speed 3.4% 15.22 26.80 -1.95 Losses Things 2.0% 14.02 -8.08 4.92 

Trip Time 3.0% -16.26 -15.34 6.23 Feels Restless 1.9% 5.91 6.06 9.15 

Travel Direction 3.0% -11.41 -26.51 22.14 Risk Perception Score 1.9% 0.49 -5.24 26.23 

Not Wearing Seatbelt 2.9% -10.77 12.78 8.22 Area Type 1.9% -3.94 -5.65 -2.37 

Trip Year 2.8% 14.48 -14.92 -10.40 Vehicle Classification 1.9% -12.25 6.91 -7.86 

Sleeper Type 2.8% 11.95 15.77 -5.43 Road Rage 1.9% -0.25 3.95 4.45 

Interchange ID 2.7% -12.12 -4.39 -3.48 Passenger Interaction 1.9% -1.88 3.17 4.97 

Ramp Design 2.5% 3.38 -7.61 0.03 Speeding < 20 mph 1.8% -9.18 -7.66 15.32 

Trip Month 2.4% -13.20 8.60 -28.88 Passing on Right 1.8% -0.10 5.43 -0.80 

Accelerates at Yellow 
Light 

2.4% 5.56 9.42 -15.27 
Driving to Reduce Tension 

1.7% 
-0.69 14.70 17.59 

Age 2.4% -1.39 -4.44 8.65 Difficulty Awaiting Turn 1.7% -0.04 11.17 -2.30 

Speeding > 20 mph 2.3% 0.82 12.75 2.88 Rolling Stop Sign 1.7% -8.33 2.50 1.90 

Driving Under Influence 
2.3% 4.56 5.42 -4.53 

Number of Trips per 
Driver 

1.7% 
21.35 -10.84 -5.69 

Road Racing 2.2% 16.54 10.01 4.81 Speeding for Thrill 1.5% -1.12 0.20 1.74 

Depth Perception 2.2% -9.09 4.76 -1.36 In a Hurry 1.5% 3.11 4.48 -10.62 

Sleep Schedule 2.2% 14.38 19.27 11.42 Running Red Light 1.5% -14.24 8.60 4.89 

Tailgating 2.1% 0.52 11.36 -8.95 Illegal Turns 1.3% -8.82 0.80 -1.44 

Difficulty Organizing 2.1% -9.44 14.48 -4.12 Gender 1.3% 2.30 3.06 20.53 

Easily Distracted 2.1% 28.11 -15.44 -10.07 Barkley Score 1.1% 12.60 0.54 5.69 

2 
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To explore the direction and the magnitude of the input effects on the outputs, it is helpful to 1 
examine the connection weights (Table 20). The connection weights are calculated for each input by 2 
using the weights from all hidden neurons (15 in total). The results were obtained for all three outputs 3 
which are the speeding states (i.e. three states of speeding behavior). 4 

Figure 37 graphically represents the relationships between the driving States and some of the most 5 

important factors.  6 

 7 

 8 

Figure 37. Description of relationships between the driving states and important variables.  9 
 10 

The magnitude of speed variance effect on speeding behavior is 37.04, 21.83 and 1.95 for the States I, II 11 

and III respectively. Connection weights for speed variance indicates that this variable has an increasing 12 

impact (positive sign) on the speeding behavior, although as drivers shift from State I to State III, the 13 

magnitude of this effect starts to decrease. This finding is consistent with the initial assumption that as 14 

the drivers move from State I to State III, they start driving more cautiously thus the magnitude of the 15 

effect of this variable is decreasing as the states progress in increasing order. The two other speed 16 

related inputs, mean and maximum speeds, are also important. It can be observed that in State I the 17 

mean speed is decreasing, this is expected because some drivers come to a complete stop. As the 18 

drivers move from State I to State III, the mean speed is increasing. This finding, together with the effect 19 

of speed variance on the speeding states, yields very interesting results. As shown, the effect of speed 20 

variance is smaller in State III compared to the State II however the effect of mean speed in State III is 21 

Speed Variance Weekday 

Ramp Design Age
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observed to be much higher compared to State II. This would imply that the speed variance is perhaps a 1 

reliable indicator of cautious driving behavior.  2 

The second most important variable group is the time and date of the trips. For State I, the effect 3 
of week day is increasing while for the States II and III the effect is decreasing. Note that the week day is 4 
in increasing order from Monday to Sunday. This implies that as the week starts to progress more drivers 5 
start driving in State I and less drivers drive in State III. Using the previous assumptions about the driving 6 
states, this result can be interpreted as follows: during the weekdays from Monday thru Friday drivers will 7 
be driving more cautiously and on the weekends they will drive less so.  8 

Another interesting relationship is presented by the ramp design. The ramp design is ordered from 9 
least sophisticated (or complex) to more sophisticated. The importance of the influence of ramp design is 10 
moderate to high (ranked 11 out of 47 factors in Table 20). The effect of the ramp design on the State I is 11 
positive and its magnitude is the highest, suggesting that as the ramps become more challenging, drivers 12 
would tend to adjust their driving to the characteristics of the State I pattern. In State II, the effect is 13 
negative implying that less drivers will be driving in this form as the interchanges become more 14 
sophisticated. The relationship between State III driving and ramp design is positive although the 15 
magnitude of the effect is very small. This could imply that the speeding behavior of State III drivers is 16 
not affected by the ramp design significantly.  17 

Among the driver characteristics the age, risk perception elements, and sleeping habits are 18 
observed to contribute more to the driving states. The results show that the driver age is negatively related 19 
to State I and II and positively related to State III, implying that as the drivers get older their driving 20 
patterns become more like the State III driving, and less like the State I and State II driving. However, one 21 
can observe that as the drivers get older they also driver less in State II and more in State I. This could 22 
indicate that the relationship between age and speeding behavior is in fact U-shaped and not linear. 23 
Further analysis will be necessary to explore the driving patterns in terms of young, middle aged and 24 
older drivers.  25 

The RPS is positively related to State I and State III driving, although the magnitude for State I is 26 
very small implying an almost non-existent impact. The magnitude of the effect for State III is very high, 27 
which would imply that State III drivers have very high risk perception. For the State II drivers this effect 28 
is negative, implying that the drivers in this group have smaller risk perception. Analyzing the speed-29 
related elements of the risk perception survey (i.e. accelerates at yellow light, speeding for thrill, or 30 
speeding over the speed limit), one can observe that the State III drivers seem to perceive the risks related 31 
to these behaviors poorly when compared to State I drivers. For example, State III drivers do not perceive 32 
accelerates at yellow light as risky as the State I and State II drivers. It can also be observed that State II 33 
drivers show highest concern to this behavior. If the State II driving can be interpreted as “moderate” 34 
driving, results show that most drivers might assume the accelerating at yellow light as a risky behavior. 35 
These results indicate that there might be a U-shaped relationship between risk perception elements and 36 
speeding behavior. More risky behaviors (driving under influence, tailgating, sudden lane changes, and 37 
passing on right), on the other hand, are perceived as highly risky by State III drivers. Further research 38 
will be needed to explore the relationships between the risk perception and speeding behaviors.  39 

The Barkley’s ADHD score was not found to be important although individual elements of the 40 
survey were found to be quite important (easily distracted and difficulty organizing). It can be observed 41 
that the drivers belonging to State II and State III tend to be less prone to be distracted, perhaps because 42 
they tend to be more aware of their surroundings while at State I, the drivers are more prone to be 43 
distracted. Moreover, the State III drivers are found to have lower Barkley score than the State I drivers. 44 
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This is consistent with the initial hypothesis that drivers scoring less in Barkley’s ADHD test were 1 
expected to have less speeding incidences.  2 

Conclusions 3 

In this paper the authors have conducted a speed profile analysis of a sample of NDS participants at 4 

freeway ramps in Pennsylvania. The authors focused the data analysis using three years of trip data from 5 

four ramp locations. To analyze the speeding behavior, the authors used 47 predictors indicating the 6 

ramp characteristics, driver characteristics, and trip summary.  7 

To perform this evaluation, the authors conducted the data analysis in three stages. The authors 8 
implemented the data reduction and clustering of the speed time series to distinguish the three types of 9 
driving behaviors named as States. Using the States as the three levels of the speeding behaviour, the 10 
authors then developed NN architecture to explore the relationships between the 47 inputs and three 11 
outputs (one output per State). Overall the results of the NN analysis uncovered interesting relationships 12 
between the ramp speeding behavior and the other explanatory. The results suggest that the traffic 13 
conditions and the geographic location are the main predictors of a driver’s speeding behavior. Based on 14 
the influence of these factors, drivers adjust their speed in a more cautious manner.  15 

The impact of driver characteristics was not found to be as important. Although the results of the 16 
NN analysis did reveal some interesting facts. For example, the analysis of the driver’s risk perception 17 
survey revealed that the drivers who drove in a more cautious manner and adjusted the speeds more 18 
smoothly (State III) did not perceive driving at higher speeds or accelerating as risky behaviors. Although 19 
they did perceive some other risky behaviors such as the driving under influence or sudden lane changes 20 
as risky behavior. These drivers were also found to be considering both traffic conditions and driver 21 
characteristics, it is quite likely that the drivers in State I, who were assumed to be less cautious in the 22 
analysis, might have adjusted their speeds and come to a complete stop simply due to traffic conditions. 23 
When examining the answers of these drivers to the risk perception questionnaire, they were observed to 24 
have higher risk perceptions as far as the speeding-related questions were concerned. They were also 25 
observed to be easily distracted based on their Barkley ADHD scores. These results might explain why 26 
the drivers observed in this driving State have stopped more times compared to the other clusters; they 27 
would be more likely to be distracted and might have had to stop or reducing the speed significantly more 28 
often when encountering highly risky situations. As future improvement on this work, the authors would 29 
like to evaluate more ramp trips to define and explain speeding behavior of drivers at these locations with 30 
more accuracy. This future work will also consider analysing the effects of risk perception elements in 31 
batches (e.g. speed related questions) rather than evaluating the impact of each element separately.  32 
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